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PREFACE

Tais is the second edition of a book originally written as an intro-
duction to the mathematics required for circuit analysis. In the
first edition it was necessary to omit several important topics,
owing to shortage of space, and this has now been rectified in the
present volume. It is hoped that sufficient breadth of material is
included to cover most of the needs of undergraduates taking an
electronic engineering course, with the exception of the specialised
work necessary for computers and digital systems, which is often
taught with the technical material, and probability and statistics,
often a subject for a particular lecturer from another department.

At the same time as the extra material has been added to the
original text, the opportunity has been taken to broaden the applica-
tion of the work, since the emphasis placed upon circuit analysis
in electronic engineering courses has rightly declined, this being
hastened by the widespread use of integrated circuits for general
systems.

The material in the book is presented as a necessary tool to solve
a variety of electronic problems, and to strengthen this approach to
the topic some of the examples at the end of each chapter are con-
cerned with electronics. Many of the “proofs” presented are plaus-
ible rather than exact, since it is felt that only in this way can an
engineering undergraduate cover the wide variety of topics that he
is expected to be familiar with, in the time at his disposal. Even so,
it has not been possible to cover all necessary points in sufficient
detail within the text of the book, and so a number have been left
as examples. It is hoped in this way to secure the reader’s active
co-operation, rather than his passive attention!

Some advanced material has been included in this book, and has
been marked with a dagger (1). In this way it is hoped to indicate
some of the directions which a more thorough study of the topics

X
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CHAPTER |

INTRODUCTORY CONCEPTS

STUDENTS and engineers will come to a textbook such as this with
widely differing mathematical training and skills. It therefore
seemed useful to devote an introductory chapter to a range of
topics, some of which may be familiar to the reader but all of which
are indispensable if a proper grounding in the subject is to be ob-
tained. As in the rest of the book, a number of examples of varying
degrees of difficulty are included and solutions, at least in outline,
are usually provided. The reader should make a point of working
through these to improve the grasp of the subject, particularly as
the text treatment of each topic is necessarily brief in a little book
like this. Nevertheless, it has been thought worth while to com-
mence with a formal grounding in differentiation and integration,
partly to refresh the mind as to the precise meanings of these con-
cepts, but also to allow comparison of the definitions with those
used as the subject is developed in other sections of the work.
The last part of the chapter is devoted to vector theory, commencing
with elementary material, but proceeding to a relatively advanced
level.

1.1 Differentiation

The idea of the rate of change of a variable is basic to a study
of many engineering problems, and it will be assumed that the
student is familiar with this. Here only the salient points of the
theory will be covered, and a summary provided of some of the
most important results.

The differential, or rate of change, of a function of x, f(x), with

1



2 MATHEMATICS FOR ELECTRONIC TECHNOLOGY

respect to an infinitesimal change in x, will be denoted by f’(x) or
df/dx and defined at a point x, by

df\ [ fxe + 8%) = f(xo)]
(a)m""“{ o f W

x—Xxo

f(x) will accordingly be said to be differentiable at x, if such a limit
exists. This will occur if f(x) is continuous at x,, in other words if
lim f(x) = f(xo) (2)
xX—X0
independently of the way in which x approaches x,.
From the basic definition a number of key results follow:

(a) dc/dx = 0 where ¢ is a constant
(b) dx/dx =1
(© d{x"}/dx = nx""! 3)

5 n
This follows since (xo + 0x)" = x," {l + _x}
Xo

n nox
=~ Xo l -+ x—
0

by the Binomial theorem (which is given in (36)).

(d) {cf(x)} = cf'(x), where ¢ is a constant
() {f(x) +g)}'=f(x) + g'x)
) {f()eg@)} =fx)g'(x) + gx)f(x) 4)

Because

(fg(x)}’ = lim {f(xo + 6x) g(xo ;xax) — (%) g(xo)}

x=Xx0 x—x0

If f(xo + 0x) — f(xo) = 4f, similarly for g, then

{f(x) g(x)}'
~ lim {f(xo) g(xo) + f(xo) Ag + g(xo) Af— f(xo) g(xo)}
- ox

xX—*Xo

and the result follows.
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S , 8 f'(x) — f(x) g'(x)
(® (g} = )

Since, following the notation of (f)

Sflxo + %) flxo) + 4f
g(xo + 6x)  glxo) + g
UG +4f) (| Ag )
- 8(xo) \ g(xo)
_ fxo) " g(xo)Af = f(x0)Ag
8(xo) g%(xo)
Substitution of this expression into (1) gives the result.

Repeated differentiation of a function leads to the concept of
the nth derivative.

(%)

d"f 6
dx" ©
Differentiation emphasises the features of a function, in the sense
that a rapid change of shape in the function becomes a step in the
derivative, a step in the function becomes a discontinuity in the
derivative. Therefore there is only a restricted range of functions
that can have nth derivatives at all points in a finite range of x,
and the restriction increases as »n increases. Two most important
functions that can be differentiated » times at all points whatever
the value of n are

f™(x) or

f(x) =sinx and f(x) =cosx )
and another is the exponential function
J(x) = exp (x) ®

A list of functions and their derivatives is given in Table 1.
A useful generalisation of (4), for the nth derivative is

{f(x) g} = f(x) ") + nf'(x) g~ V(x) +

’%)f @) g" X)) + ... + M) gx) 9)
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This result can be proved by repeated application of the technique
used to prove (4).

The turning points of a graph y = f(x) can be determined by
finding the values of (x, y) for which

dy/dx =0 (10)

Such a turning point is called a maximum if y reaches its local
maximum value at the point, and a minimum is defined correspond-
ingly. In Fig. 1.1 points A, B and C are maxima, D, E and F are

FiG. 1.1. Maxima and minima.

minima. Note that the absolute maximum and minimum values
of this function are not defined by examination of the maxima and
minima — the latter are properly described as turning points of the
function. Nevertheless, the determination of turning points for a
function is important, and although it can be done analytically
for simple functions, in practice numerical methods may have to
be employed.

To determine whether a point for which (10) holds is a maximum
or minimum is often simplest achieved by consideration of the
problem being solved. Often properties or even the general shape
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TABLE 1. FUNCTIONS AND THEIR DERIVATIVES

S0 bA(E))

xﬂ nxn— 1

» ny"~(dy/dx)
sin x cos x

cos x —sin x

tan x sec? x

cot x — cosec? x
sec x sec x tan x
cosec x — cosec x cot x
exp (ax) a exp (ax)
sinh x cosh x

cosh x sinh x

log x 1/x

sin~! x (1 —x»)~¢
cos™'x —(1 — x?)~*
a”® a*loga

of the function under investigation are clear before calculation
takes place. A mathematical technique for this purpose is to perturb
the value of x slightly from that at the turning point and to check
whether y increases or decreases. Alternatively the function can be
differentiated a second time, since for a maximum d?y/dx? is
negative as x increases through the turning point value, and for a
minimum d*y/dx? is positive.
For example,

y =3x—-9x+1
y =9x*-9
= 0 when x is +1
¥y = 18x
When x = +1,»® > 0, when x = —1, y® <0

Therefore at x = + 1, y has a minimum and at

x = —1, y has a maximum.
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Check this result by drawing the graph.

Occasionally (10) will be satisfied, and yet the point determined
will be neither maximum nor minimum. In this case it will be a
point of inflection, as shown in Fig. 1.2, probably best described
as a momentary pause in the progress of y, whether increasing or
decreasing. At such a point d?y/dx? will also be zero.

Fi1G. 1.2. Point of inflection.

There are certain special cases in which the above rules for deter-
mining whether a point be a maximum, minimum, or point of
inflection do not hold, notably when the second and some higher
order differentials are zero, but these will be rarely met in practice.

1.2 Integration

Turning now from differentials, an indefinite integral can be
defined as a function whose derivative is a given function. The
indefinite integral of f(x) is written

g(x) = [f(x)dx 1

and from the definition

g'(x) = f(x) (12)
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Since the derivative of a constant is zero, it is clear that g(x) will
in general have an added arbitrary constant. Some of the properties
of the indefinite integral can be deduced from those of the derivative.

Thus

(i) jdx = x + C, C an arbitrary constant
This follows from (b)

(i) [nx""'dx = x"+ C, from (c)
(i) [ Cf(x)dx = C[f(x)dx, C is constant
Noting (d) and (iii), (ii) may be rewritten

+1

+C

X
jx"dx=n+1

(iv) J{f) + g0} dx = [f(x) dx + [g(x) dx
(v) From (f), considering the integral of both sides
f(x)g(x) = [f(x) g'(x) dx + [f'(x) g(x) dx
which is more usually written
Judv=wuv - [vdu (13)
and is a most useful result.
Table 2 gives some useful indefinite integrals.

Turning now to definite integrals, these are defined with reference
to the graph of the function y = f(x), see Fig. 1.3. If the function

y

a PI P.b

FiG. 1.3. Integration.



