Lecture Notes in Mathematics

@
(o)}
w

Wolfgang Siegert

Local Lyapunov
Exponents

Sublimiting Growth Rates
of Linear Random Differential Equations

@_ Springer




Wolfgang Siegert

Local Lyapunov
Exponents

Sublimiting Growth Rates of Linear
Random Differential Equations

@ Springer



Wolfgang Siegert

Allianz Lebensversicherungs - AG
Reinsburgstrasse 19

70178 Stuttgart

Germany

wolfgang.siegert @allianz.de

ISBN 978-3-540-85963-5 e-ISBN 978-3-540-85964-2
DOI: 10.1007/978-3-540-85964-2

Lecture Notes in Mathematics ISSN print edition: 0075-8434
ISSN electronic edition: 1617-9692

Library of Congress Control Number: 2008934460

Mathematics Subject Classification (2000): 60F10, 60H10, 37HI15, 34F04, 34C11, 58J35, 91B28,
37N10, 92D15, 92D25

(© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9.
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: SPi Publishing Services

Printed on acid-free paper

987654321

springer.com



Lecture Notes in Mathematics 1963

Editors:

J.-M. Morel, Cachan
F. Takens, Groningen
B. Teissier, Paris



Preface

Establishing a new concept of local Lyapunov exponents, two separate the-
ories are brought together, namely Lyapunov exponents and the theory of
large deviations.

Specifically, for the stochastic differential system

Az = A (X{) Z¢ dt
dXf = b(X?) dt + VE o (X)) dW;

[l

the new concept is introduced. Due to stationarity, the Lyapunov exponents
of Z; (which by Oseledets’ Multiplicative Ergodic Theorem describe the expo-
nential growth rates of Z;) do not depend on the initial position x of X¢. Now
the goal of this work is to provide a Lyapunov-type number for each regime
of the drift b. As this characteristic number shall depend on the domain in
which X¢, a dynamical system perturbed by additive white noise, is starting,
it yields a concept of locality for the Lyapunov exponents of Z;. Furthermore,
the locality of such local Lyapunov exponents is to be understood as reflect-
ing the quasi-deterministic behavior of X¢ which asserts that in the limit of
small noise, ¢ — 0, the process X has metastable states depending on its
initial value as well as on the time scale chosen (Freidlin-Wentzell theory).
Up to now local Lyapunov exponents have been defined as finite time
versions of Lyapunov exponents by several authors, but here we target at
investigating the large time asymptotics t — o0o. So the goal is to connect
the large parameters t and 7! in the customary definition of the Lyapunov
exponents in order to approach the sublimiting distributions (Freidlin) which
are supported by the metastable states of X¢. The local Lyapunov erponent
is then understood to be the exponential growth rate of Z° on the time scale
chosen, subject to convergence in probability as ¢ — 0. Notably, the system
itself changes in the sense that the noise intensity converges to zero with
the time horizon depending on the noise intensity parameter. In contrast to
this new concept the Lyapunov exponents as obtained by the Multiplicative
Ergodic Theorem reflect the information of limit distributions, i.e. of invariant
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measures, as time increases to infinity for the system parameter ¢ > 0 being
fixed.

As a result we prove that the local Lyapunov exponent is bounded from
above by the largest real part of the spectrum of the matrix A evaluated at
the metastable state corresponding to the time scale; the respective bound
from below holds true with the smallest real part of an eigenvalue of A at
the corresponding metastable state.

Assuming that A takes its values in the diagonal matrices, it is shown
that its eigenvalues at the respective metastable state are precisely the
possible local Lyapunov exponents. Moreover, in a “strongly” hypoellip-
tic situation it can be proved that only the largest eigenvalue is observed
under convergence in probability. The latter result is regarded as sublimiting
Furstenberg-Khasminskii formula, since the resulting limit is obtained as a
(trivial) integral which produces the top eigenvalue.

For the above tasks the prerequisites which fundamentally consist of know-
ing the exit probabilities of all the stochastic systems involved will be provided
in detail: For this purpose, an integrated account of the theory for non-
degenerate stochastic differential systems (Freidlin and Wentzell) and of the
exit probabilities for degenerate stochastic systems (Hernandez-Lerma) is
given in chapters 2 and 3. The subsequent final chapter is the heart of the
book. Here, all the results are proven and discussed.
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Introduction

During the last decades intense research has been devoted to dynamical sys-
tems subject to random perturbations: Considerable effort has been dedicated
to investigate exit times and exit locations from given domains and how they
relate to the respective deterministic dynamical system. Building upon con-
siderations in physics and chemistry (see e.g. the classical paper by Kramers
[Kr 40]) the theory of large deviations by Freidlin and Wentzell ([Fr-We 98],
[Fr 00]) provides the correct mathematical framework for tackling these prob-
lems in case of Gaussian perturbations. This theory sets up the precise time
scales for transitions of non-degenerate stochastic systems between certain
regimes. The behavior of such systems is called metastable.

The theory of random dynamical systems, on the other hand, consid-
ers stochastic processes which satisfy a certain flow property, the cocycle-
property. The main cornerstone here is the Multiplicative Ergodic Theorem
by Oseledets [Os 68]; also see Arnold [Ar 98]: This theorem assigns Lyapunov
exponents to linear random dynamical systems. These are the exponential
growth rates as time grows large for fixed intensities of the underlying noise.

The following work now attempts to close the gap between these two
stochastic disciplines: It does not study the exponential growth rate for a
fixed noise intensity and large time (resulting in the Lyapunov exponents),
but considers the exporential growth, if the time horizon depends on the noise
intensity. Thus one considers the Lyapunov characteristics on time scales.
Since these time scales correspond to metastable points, the Lyapunov expo-
nents are localized by connecting the large time asymptotics to the limit of
vanishing noise intensity.

What one usually does when dealing with “local Lyapunov exponents” is
to replace the infinite time limit (characterizing the Lyapunov exponents)
by a large, but finite time horizon; see Abarbanel et al. [Ab-Brw-Ke 91]
and [Ab-Brw-Ke 92]. Wolff [Wo 92|, Pikovsky [Pk 93], Pikovsky and Feudel
[Pk-Fe 95] and Bailey et al. [Ba-EI-Ny 97]. A similar discussion in the same
spirit is undertaken by Monahan [Mo 02]: In the case of the Maas model he
describes the concept of a “local Lyapunov exponent” for which the infinite
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2 Introduction

time limit is replaced by a large, but finite time horizon; this time then needs
to be large enough for the system to sample the local attractor, but smaller
than the average escape time of the regime. This rationale is also applied
when calculating the respective exponents numerically. Now generally speak-
ing, the problem in the case of an elliptic stochastic differential system is
that switches to other regimes occur with strictly positive probability—no
matter how small the time horizon is chosen. On the other hand, e.g. as com-
puters can necessarily work with finite calculation horizons only, our concept
of localizing Lyapunov exponents by means of time scales justifies the above
finite-time procedure, if time scales are chosen appropriately. Let us further
describe this rationale:

The base systems under consideration are dynamical systems with additive
white noise perturbations; for simplicity let the process X ¢ be defined by the
stochastic differential equation (SDE) of gradient type

dX{ = — VU (XF) dt + v dW;

for the moment. It describes the motion of a particle in a potential landscape
which is derived from the real-valued, differentiable function U defined on
R?. The linearization of X¢ is then given as the solution of the linear, real
noise driven differential equation

dzZi = — H, (X) Z dt,

the so called variational equation, in which H, (x) denotes the Hesse matrix of
second derivatives of U at x. The variational equation governs the evolution
of “infinitesimal disturbances” of X§. The Lyapunov exponents of the system
are now defined as the exponential growth rates

1
lim - log|Z;(.,z,2)].
t—oo t

Their existence is assured by Oseledets’ [Os 68] Multiplicative Ergodic The-
orem and their number does not exceed the dimension d of the state space
of X¢. Due to the stationarity of the flow X< in Oseledets’ theorem, the
Lyapunov exponents do not depend on the initial condition 2 = X§™".
Suppose that the potential function U has the qualitative shape as depicted
in figure 1.
Moreover, let

Ax) > ... > AY(x)

denote the (decreasingly indexed) eigenvalues of — H, (x). The goal of this
contribution is to provide a Lyapunov-type number for each regime of the
potential function U. As this characteristic number shall depend on the initial
point (more precisely, on the well in which the stochastic solution X* is
starting), it shall yield a concept of locality for Lyapunov exponents. The
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K K3 K>

Fig. 1 A prototypical potential function U : R — R with two wells

main motivation for the concept thus defined is that in the small-noise-limit
the particle X¢ stays in the initial shallow well near K for an exponentially
long time (Kramers’ law, Freidlin-Wentzell theory) during which we can “see”
the shallow well; afterwards the particle finally overcomes the barrier at A’g
and the deeper well around K3 dominates the picture; mathematically this is
made precise by observing that K, and Ky are the supports of the sublimiting
distribution on the corresponding time scales (Freidlin [Fr 77] and [Fr 00]).
Furthermore, K, and K5 are the metastable points of the potential. In order
to capture this metastable behavior we connect the parameters t and ¢ by

e(t) = @

for a scaling parameter ¢ > 0 for approaching the sublimit distributions.
Hence, we consider

1 (t
= log|Z,E )(l,x.z)|
and we then conjecturé that this random variable converges in probability to
A (Kk)

as t — oo, where & € {1,2} depends on the initial position r and on the
time scale parameter ¢ of Xy ; more precisely, if z is in the K j-regime and

if also ¢ < 2v, then k = 1; otherwise, k = 2. This conjecture is proven
in section 4.3 under the additional assumption that H,.(.) only takes its
values in the diagonal matrices; the index j € {1,...,d} then, of course,

depends on the initial direction z of Z. We call these limit numbers the
local Lyapunov exponents of Z. In the general case, i.e. abstaining from the
diagonality condition, section 4.4 gives conditions under which the above
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exponential growth rate converges in probability to the top eigenvalue of
-H, (Kk),

A (Ky)
where K. again denotes the metastable state for the time scale chosen; this
limit then is the local Lyapunov exponent of Z. In other words, defining

T(e) := e/,

the previous discussion concerns the convergence in probability of

1
6] log | Zrey (. 2, 2) l
as € — 0. In comparison with the previously mentioned concept by Abarbanel
et al. [Ab-Brw-Ke 91] and [Ab-Brw-Ke 92], Wolff [Wo 92], Pikovsky [Pk 93],
Pikovsky and Feudel [Pk-Fe 95| and Bailey et al. [Ba-El-Ny 97] who would
take the finite time growth rate

1 .
T log|Z§—(..J:.z) ’

for fixed 7' and ¢ as “local Lyapunov exponent”, one therefore obtains a
rigorous explanation for how to correctly choose the time horizon depending
on the underlying noise intensity .

Furthermore, we would like to comment on a second type of “local Lya-
punov exponents” which can be found in the literature: Let d = 1, then the
drift of Z¢ in the variational equation is

—H,(x) = -U"(x),

the negative curvature of U at x. Several authors then call this number
—U"(x) the “local” or “local in phase space” or “instantaneous” Lyapunov
exponent; see Fujisaka [Fu 83], van den Broeck and Nicolis [vB-Ni 93], Witt
et al. [Wt-Ne-Kt 97] and Pikovsky and Feudel [Pk-Fe 95]. However, this is
not in accordance with our understanding, since the corresponding stochastic
system X¢ does not stay near an arbitrary initial point x, but is confined to
one of the metastable points A’;, Ky by the drift —U’. The system Z° mainly
samples —U’(K}) for k € {1.2}, but neglects contributions of some other
—U’(x). Therefore our result for the one-dimensional situation (see remark
4.1.4) only has the values

~U"(RK") and  — U"(K>)

as local Lyapunov exponents in the sense of our definition in contrast
to Fujisaka [Fu 83]. van den Broeck and Nicolis [vB-Ni 93], Witt et al.
[Wt-Ne-Kt 97] and Pikovsky and Feudel [Pk-Fe 95]. In other words. this
expresses the fact that the instantaneous rates —U”(x) do not have equal
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rights, but the Dirac measures dx, and dg, are the sublimiting distributions
reflecting the preferences of X¢ on the time scales.

A third, deterministic concept of locality of Lyapunov exponents different
from ours has been introduced by Eden, Foias and Temam [Ed-Fo-Tm 91].

It has already been indicated above that Kramers’ law, made precise by
Freidlin and Wentzell, plays a dominant role in the following considerations.
It is interesting that already the classical Eyring-Kramers formula for the
exit times of X contains the eigenvalues of the Hesse matrix of U at K, Ky
and K3. Namely let 7§, (and 735,) denote the time at which X¢ enters the
K>-well when started in K (and vice versa). Then in the limit as e — 0.
under non-degeneracy assumptions, the following asymptotic expressions are
known to hold for the mean exit times,

27 Hz:l ) PZU/E
R \ [T |

€ ~o
Er, =

and

2 H(Ll A (K e2V/e
—— ,
AI(AB) \ Hz—l A”

which are cited from Bovier at al. [Bv-Ec-Gd-Kn 04] in the above notation.

€
Er =~

Abstracting the previous considerations one detects that the underly-
ing diffusion does not have to stem from an SDE of gradient type; the
Freidlin-Wentzell theory of large deviations and metastability also admits
more general drift functions b and also state dependent noise coefficients o
under certain assumptions. Overall, the two characteristic features of the
above stochastic differential system (X¢, Z¢) are the following: Firstly. it is
degenerate in the sense that in the equation for Z¢ there is no noise component
but only a drift coefficient depending on X<; in other words, the differential
equation of Z¢ is random, driven by the real noise process X¢. Secondly, the
differential system is linear with respect to Z¢. Further abstracting the system
matrix A is by no means restricted to be the negative of the Hesse matrix of
some potential function; it can be any matrix valued function defined on the
state space of X¢. Moreover, we will also admit that the state spaces of X*
and Z¢ can have different dimensions. Hence, the general object of the sub-
sequent considerations is the real-noise driven, linear stochastic differential
system

dZs = A (XF) Z¢ dt

1
dXF = b(XF) dt + VE o (XF) dW, (1)

where ¢ > 0, W is a Wiener process on RY, A € C(R*.R"*") (or A €
C(RY.C"™ ™). the drift b : RY — R? does not necessarily stem from a
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potential, but exhibits several regimes and the values of o : R — R4*? are
close to idga. All in all, X¢ is a diffusion in R% with small noise intensity and
Z¢ is a linear cocycle in R™. Generalizing the previously sketched idea the
local Lyapunov exponents are the possible limits of

1
5 logIZf(t)(.,x,z)’

as t — oo, where

e(t) = loigt

for a scaling parameter ¢ > 0, depending on the initial condition z of X¢ and
the initial direction z of Z°.

The goal of proving convergence in probability for this exponential growth
rate on a time scale is organized as follows:

In the first chapter we collect known results on linear, real noise driven
differential systems such as the Multiplicative Ergodic Theorem, their decom-
position in spherical coordinates and the deterministic Hartman-Wintner-
Perron theorem. The latter two subjects yield coordinate systems which will
decisively come into play in chapter 4.

Beforehand, chapter 2 gives an account of the Freidlin-Wentzell theory as
needed for describing the locality, metastability and sublimiting distributions.
Since this theory is based on the fundamental exit time law for non-degenerate
stochastic systems, this result is recalled in detail.

The system Z¢ of (1) is a degenerate stochastic differential system by
definition, since there is no stochastic differential in the Z-component. This
is in particular also true for the angle of Z¢. As the behavior of the latter
process needs to be investigated in chapter 4 chapter 3 recalls known results
on its exit probabilities; more precisely, we give an account of the theorems by
Hernandez-Lerma concerning exit probabilities of degenerate systems which
are not covered by Freidlin-Wentzell theory.

Chapter 4 finally investigates the exponential growth rates on the time
scales: Firstly, it is proven that the top real part of an eigenvalue at the
metastable state is an upper bound for the local Lyapunov exponent; like-
wise, the smallest real part of an eigenvalue at the metastable state is a lower
bound for the local Lyapunov exponent; see section 4.1. Since det Z¢ is a pro-
cess in R and the situation is quite tractable for a one-dimensional state space,
a consequence for the exponential growth rate of det Z¢ can be drawn which
is subject to section 4.2. The coordinates from the Hartman-Wintner-Perron
theorem allow to explicitly calculate the exponential growth rate under the
additional assumption that A solely takes diagonal values; see section 4.3.
Finally, section 4.4 gives criteria under which one can obtain convergence
in the general, two-dimensional case: Here the result by Hernandez-Lerma
comes into play as the decomposition of |Z{| by means of spherical coor-
dinates demands an assertion on the angle process of Z;. More precisely,
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a statement concerning the Lebesgue measure of the times which the angle
process spends at the switching curves of its drift can be deduced; this result
which is analogous to Freidlin’s [Fr 00] metastability theorem then allows to
calculate a sublimiting version of the Furstenberg-Khasminskii formula.

A final remark is necessary concerning the use of the notion of “time
scales”: There is now a very elaborate theory of “dynamic equations on time
scales”; this theory has been invented by Hilger [Hi 88]; also see Bohner and
Peterson [Boh-Pet 01]. This concept understands “time scales” (also called
“measure chains”) as certain time sets which are underlying to the systems
under consideration. Hence, the investigation of an ordinary differential equa-
tion (ODE) means to work with the “time scale” T = Ry or R; an ordinary
difference equation is understood as dynamic equation on the “time scale”
T = Ny or Z. However, in this paper here the physical time set is always R
and a time scale in our context is understood as a time horizon T' = T'(¢)
which depends on the parameter € > 0 of the base SDE of X*.

The symbol O will be used to mark the end of a proof. In order to avoid
latent ambiguities, it will also be employed sporadically to finish remarks and
examples where necessary.
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