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Preface

This book is intended to provide an introduction to some of the
interesting, and perhaps surprising, phenomena often encountered in
systems which vibrate and which do so under the influence of parametric
and/or nonlinear effects. Therefore the bias of the book is predomin-
antly towards the phenomenoiogical, but mainly in the context of
mechanical engineering. I have, in places, attempted to bring in applica-
tions or circumstances outside mechanical engineering within which
particular effects have been observed. However, in the main, the book
is directed towards mechanical engineers. There is no shortage of
excellent texts in the general area of parametric and nonlinear vibrations
but in almost all cases there is an assumption either of prior knowledge
and experience or of a very considerable facility with the appropriate
forms of analysis. Clearly having the former will only serve to clarify
and add to the picture obtained from studying advanced texts, but since
many aspiring students in the field will probably not be experienced
researchers a more gentle introduction, such as may be found within this
book, should be of some help. In addition to this, the second point
raised above on analytical skill merits some attention. I hope that by
virtue of the reasonably detailed examples given in the book some of
the subtleties of certain parametric instability problems, and of aspects
of nonlinear vibrations, are brought out without getting too lost in the
mathematics. In this context it might be appropriate to draw the
reader’s attention to certain specific sections within the text and to offer
a brief explanation for the length of the discussion at those points.
Section 1.7.4 deals with Virtual Work and Lagrange’s Equations in the
standard manner with minimal abbreviation. This is to allow the
interested reader to work through this important analysis and perhaps to
gain a clearer understanding of what it means in the process. On the
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other hand, the result may be noted without going through the deriva-
tion; either option is available. A similar approach has been taken in
Section 2.1 in which a reasonably concise, yet formal, appraisal of the
stability of Mathieu—Hill type equations is presented. There is a brief
review of electronic applications of parametric systems in
Section 2.4.4(b) and the aim here is to draw the reader’s attention to
these and to attempt to show that parametric amplifiers are deliberately
stabilized by means of specifically introduced nonlinear circuit elements.
The discussion is relatively superficial given that this is not mainstream
material; references for further reading are given. Sections 3.1.3(a) and
(b) treat the kinematics and the derivation of the equations of motion
respectively for a parametrically excited cantilever beam where com-
bined bending and torsional motion is possible. Again a reasonably fuil
treatment of the problem is given so that the source of the nonlinearities
that are highlighted is made clear. Dealing with a ‘simple’ problem in
this way hopefully goes some way towards showing the potential
complexity of nonlinear vibrations without being completely inpenetr-
able. In the final chapter a section on chaos is included (Section 5.3). I
have not attempted to deal with the subject in any great depth but have
presented some principals and definitions that I consider important.
Several excellent books on chaos have recently been published and the
reader is strongly advised to investigate these for further details.

The general intention behind writing this book has been to provide a
starting-off point for those who wish to extend their appreciation of
mechanical vibrations into the parametric and nonlinear domains. 1 have
provided a list of references which is fairly broad in coverage in order to
enable the student to get started, hopefully without being put off by the
immensity of the available literature. I therefore strongly recommend
that the references to other texts are followed up so that further insight
is obtained.

Matthew P. Cartmell
Department of Engineering
King's College

University of Aberdeen
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1

Linear vibrations in
mechanical engineering

INTRODUCTION

It is intended that this first chapter should serve as a general and
broad-based revision of the concepts of mechanical and structural
vibrations, specifically those which are conventionally classified as being
‘linear’. Although it is assumed that the reader has some familiarity with
vibrations theory and appropriate areas of applied dynamics, a substan-
tial awareness of the subject is not a prerequisite for gainfully reading
this, or further chapters. It is suggested, however, that appreciation of
the central theme of the book, namely parametric and non-linear
vibrations, will be enhanced by referring to this section.

1.1 CLASSIFICATION OF VIBRATION PROBLEMS

There are several ways in which we can attempt to classify a system, or
a problem in vibrations; for instance it may be conservative, where the
total encrgy of the system remains constant during motion, or non-
conservative in which case energy is expended in overcoming some form
of dissipation, and where there may also be a kind of forcing or
excitation acting on the system. An alternative approach would be to
relegate these criteria to a different level of classification and to adopt
the terms linear and non-linear as more fundamental categories of
problem definition.

Linear vibrating systems will contain mass (or inertia), stiffness, and
damping (to some degree) and so, as long as these quantities are
themselves linear in their behaviour and are not varying with time, a
mathematical model employing a linear ordinary differential equation
with constant coefficients should adequately portray the motion of the
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system. Since damping, or dissipation, is never totally absent in practice
we generally accept that a non-conservative linear model will often
prove to be a realistic starting point in our explorations. Further
assumptions enter into our conceptualization of linear vibrating systems
in the form of inelastic mass and inertia elements, massless springs and
dampers which possess neither elasticity nor mass but introduce dissipa-
tory forces proportional to the relative velocity across the element. An
important and unique identifier of linear action is the principle of
superposition which simply states that resultant oscillations may be
composed of two, or more, separately excited motions which combine
linearly to generate one response motion. The principle can be used to
determine the complete solution to a forced vibration problem by
combining the particular solution due to the forcing and the com-
plementary solution arising from the initial conditions.

It will probably be apparent, even at this stage, that a truly linear
system is unlikely to be found except on paper and that practical
questions must surely threaten our convention of linearity, and in
particular the notion of easily obtained solutions to manageable and
well-behaved equations of motion. Therefore we must be confident that
the type of linear model proposed is adequate in the sense that the
distributive nature of mass, elasticity and damping, as pertaining to the
specific problem, is properly understood. To do this we can additionally
categorize the problem as being discrete or continuous in form.

A discretized system may contain one element of mass, connected to
attendant massless springs and damping devices, or several lumped
masses, or inertias, joined together by massless springs and dampers. A
model of this type will rarely be wholly representative of the system
under investigation, since it is often difficult to break down real machine
and structural problems in the certainty that one is creating an accurate
mathematical portrayal. On the other hand, a continuous formulation of
the problem, where the properties of mass and elasticity are ecach
considered to be inseparable along the axis of action, will avoid such
hazardous simplifications but this will be at the expense of subsequent
analytical ease and convenience.

In the case of discrete models one needs to consider the number of
degrees of freedom of the problem. This is the number of independent
coordinates that are needed to fully describe the possible motion of the
system. It does not always follow that each mass or inertia has merely
one degree of freedom since its motion may consist of a variety of
different translations or rotations, or both, however it does follow that
any discrete system will have a finite number of independent coordinates
and therefore a finite number of degrees of freedom. A continuous
model must by definition have an infinite number of degrees of freedom
as its mass is continuously distributed within the structure.



Classification of vibration problems 3

In addition to the above a system may appear to be linear only under
certain conditions, and a commonly occurring example of this is the case
of small oscillations about the equilibrium point. The requirement that a
spring obeys Hooke's law is only adequately satisfied for relatively small
deflections, after which its linearity may be in question. Similarly,
classical linear viscous damping, as so often called upon in engineering
problems, may only hold over a restricted range of velocities, and even
then it may not be a realistic indication of that which actually exists
within the system.

In conclusion, therefore, it can be said that our interpretation of
vibration problems in engineering is of prime importance, and that the
answers obtained from analysis will generally involve some form of
approximation, so it is crucial for the engineer to develop a logical as
well as an instinctive facility with the domains of linear modelling,
modelling of nonlinear problems where linearization may under certain
conditions be acceptable, and entirely nonlinear problems, where
alternative techniques must be applied.

1.1.1 Classification in terms of constraints

Because all problems in dynamics involve formulating relationships
between forces as well as amongst displacements it is obvious that forms
of constraint must exist, which, in a practical sense, serve to restrict or
contain the operation of the system by means of boundary effects or
internal interactions of some description. This implies that if we can
represent such constraints mathematically then we have a means of
specifying relationships between coordinates as well as between forces
and torques. This in turn points to the possibility of a distinction
between those coordinates that can be related in this way and those that
cannot. Coordinates that do not feature in equations of constraint must
therefore be independent and will equate to the numbers of degrees of
freedom active in the system. These can be translational or rotational,
relative or absolute. We can now see that each constraint equation that
exists for a system will reduce the number of truly independent
coordinates by one (and hence the number of degrees of freedom).
Many cases of structural and machine vibrations allow for the identi-
fication of a set of independent or generalized coordinates by consider-
ing the constraints acting, and thus the constrained coordinates which
result. We use the term holonomic to apply to these. Conversely this
process of elimination of constrained coordinates to render a set of
generalized coordinates is not always possible, for example we can
consider instances in which the active constraint equations contain, say,
velocity dependent forces, such as those that give rise to relative sliding
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velocities in structural joints as a case in point. These constraint
equations are unlikely to be integrable, and as a result the system is said
to possess non-holonomic constraints.

Within the domain of holonomic constraints two supplementary con-
straint types are available and these refer directly to the presence of
time dependency, so for the case of a time variant holonomic constraint
system we use the term rheonomic holonomic. The time-invariant case is
called scleronomic holonomic.

By considering and briefly discussing the ideas of conservation,
linearity, discrete and continuous distributions of mass and elasticity,
and constraints, we have mapped out ways in which we can begin to
identify our problem and then we can proceed to devise a useful
solution. Application of the tools of classification may not always be a
wholly conscious step in the process, however implementation of these
ideas to some extent (and perhaps not always explicitly) will always be
necessary to derive descriptive equations of motion.

1.2 FUNDAMENTALS OF VIBRATING MECHANICAL
SYSTEMS

All mechanical engineering structures which undergo oscillatory motion
will contain, and be expressible in terms of, mass, stiffness, and
damping. Useful related parameters are inertia (synonymous with mass
but found in rotating systems), flexibility which can be shown to be the
inverse of stiffness, and dissipatory forces which embrace ‘damping’ but
also describe other non-conservative force effects such as dry friction.

The way in which we choose to identify the significant effects of these
mechanical parameters is of great importance since their effect can be
straightforwardly direct, or alternatively seemingly indirect in the case of
effectives where we attempt to model a system in the context of remote
parameters. Therefore such remote effects may have a principal point of
action removed from the point of interest, however their influence is
still highly significant there.

1.2.1 Mass and inertia

Mass is an elementary property capable of acquiring or expending
kinetic energy within the system due to imposed velocity gradients.
Weight is a force quantity and is the effect of gravitational acceleration
acting on mass. In the same way a mass will accelerate in the direction
of (and under the influence of) a force, or resultant force in a force
system. We derive the work quantity from the product of force and
displacement in the direction of the force. Work on a mass is com-
mensurate with the overall change in kinetic energy. Accordingly the
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concept of mass is central to Newton’s laws of motion upon which the
above statements are founded. We conventionally regard mass as
inelastic, and add on our notions of elasticity and dissipation later as
though they are physically separable from one another within the
system. This simplistic view of things fades to some extent the nearer
one gets to a continuous model, however it is a perfectly valid approach
in lumped parameter representations.

Interpretation of effective mass in an engineering system depends on
how we can break it down into discrete masses and stiffnesses. If several
identifiable mass elements are clearly connected by spring-like elements,
whose individual masses are negligible, then the problem is likely to be
multi-degree of freedom in nature. Alternatively rigid interconnections
between isolated lumped masses compel us to evaluate an effective mass
quantity which can then be regarded as acting at any convenient point in
the system. It is usual to refer the effective mass to a particular point of
interest. Some well-known illustrations of how we use effective mass
are, for example, natural frequency evaluation in a single degree of
freedom mass and spring system where the spring mass is not negligible,
or similar analysis of an oscillating motion conversion linkage as found
in an engine valve gear configuration. Many such cases can be found in
the literature (Tse, Morse and Hinkle, 1978; Rao, 1984) and involve
expressing the system kinetic energy in a form equal to an equivalent
kinetic energy at the chosen point of interest. This approach works
equally well for translating and rotating systems (or combinations of
these).

Discrete systems with many degrees of freedom naturally require a
rather more complicated mathematical model than single degree of
freedom problems, and the conventional approach here is to express the
mass constituents of the system in the form of a matrix. In its simplest
form the mass matrix does not depict any form of coordinate coupling,
since in such cases all non-leading diagonal terms will be zero. More
complicated problems will exhibit non-zero terms in other elements of
the matrix; this points towards dynamic or inertia coupling between the
coordinates. It is worth mentioning that identical considerations also
apply to stiffness, and any coordinate coupling in this sense is called
static or elastic coupling. An absence of both dynamic and static
coupling indicates a situation where the resulting equations of motion
can be solved independently. Coordinates in uncoupled problems are
termed principal coordinates. Mass considerations in the domain of
continuous systems introduce the idea of generalized mass, a quantity
which is calculable for any particular mode of vibration. So, in a
continuous system the mass which is operative in the system is a
function of the mode shape and as such the resulting ‘mass’ will be seen
to vary substantially between the modes.
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1.2.2 Stiffness

All vibrating systems possess some form of elasticity, and in its most
elementary form this is regarded as a simple linear proportionality
relating displacement to applied load. Springs may assume a variety of
physical forms and helical, torsional and flat springs are commonplace.
The mass of a spring, or spring-like element, is often neglected in
elementary analysis, however it can frequently be found to be contribu-
tory to a sizeable correction in natural frequency estimation.

Deformation of a spring arises because of an applied force so that
there is a relative displacement between the extremities of the spring.
The magnitudes of the force and displacement in a linear spring are
related by a simple constant of proportionality sometimes known as the
rate or stiffness. The units of stiffness are conventionally N/m. A
deformed spring stores up potential or strain energy, this is equal to the
work done in deformation. Stiffness is an additive quantity in the sense
that several connected stiffnesses will have an overall combined effect.
Simple rules apply, and a restatement and elaboration of these is
unnecessary here; substantial coverage of simple spring equivalence
problems is attributed to many authors, (Den Hartog, 1956;
Timoshenko et al., 1974; Tse et al., 1978; Thomson, 1981; Rao, 1984;
Meirovitch, 1986). Potential energy considerations also call for an
appraisal of mass positioning, whereby an additional mg term can
sometimes be added to the strain energy term.

Linearity in springs is only guaranteed for small deflections and after
a specific point on the load deflection plane we find that the simple
proportionality rule no longer applies. It is possible to linearize large
deflection problems, however the errors introduced can be excessively
high. Further discussion on the subject of nonlinear springs will be
found in the second section of this book.

1.2.3 Damping

Damping is a very complicated and specialized subject in itself but one
to which we must devote a certain amount of effort in understanding if
we are to competently incorporate it in our analysis. Relatively few texts
are available which deal with the subject in the depth it deserves, but
the reader is referred to two authoritative books (Lazan, 1968; Nashif er
al., 1985), which are exceptions to this rule and which deal with the
many different facets of structural and machine damping in a practical
and useful manner. There is also much useful information on damping
and its mechanisms in the excellent recent text on nonlinear oscillations
(Nayfeh and Mook, 1979).

It is well known that lightly damped structures dissipate their energy
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more slowly than their heavier damped counterparts and therefore
continue in motion for longer, with a correspondingly slower decay in
the magnitude of motion. Damping as a phenomenon does not appear
only in oscillatory problems, but in all instances in which mechanical
energy is expended in inciting a system into motion. Nashif et al.(1985)
mention the indisputable but perhaps not immediately obvious example
of the ‘efficient’ golfball, where the highly elastic inner material of the
ball is specially designed to instantaneously absorb a huge amount of
energy on impact with the club and then to release it as quickly as
possible so that almost all this energy is utilized in propulsion. Clearly
this is an example of minimal damping.

Classroom theoretical damping models usually assume the form of the
classical linear viscous damper where the damping forces generated are
proportional to the velocity gradient across the device. This oil-piston—
dashpot model is rather contrived and not indicative of ‘real’ engineer-
ing. The nearest practical instance of the simple dashpot damper is the
automotive shock absorber, but in most cases additional non-viscous
effects and supplementary stiffnesses are introduced which take us
further away from the simple Cx model (where C is the coefficient of
linear viscous damping and ¥ the velocity across the damper). The
measurement method that relates to viscous damping with its exponen-
tial decay characteristics, is the logarithmic decrement, by which we
relate the amplitudes of two cycles n cycles apart in the form of

6= 1 In (f—l) 1.1
Py (1.1)

It is a comparatively easy matter to evaluate the damping coefficient
C, or alternatively the damping ratio & where £ = C/C,, given that C.
is the critical damping constant, and we can show that

_ 2n& _aC
&= V& = g (1.2)

where m and wy represent the mass and the damped natural frequency
of free vibration. Viscous damping serves to limit resonant motion and
is easily incorporated into most mathematical models.

Other definable linear damping varieties are dry friction, hysteretic
and acoustic damping. Dry friction, or Coulomb damping, can be found
in situations where relative motion between two contacting surfaces
introduces a frictional force so that a single degree of freedom problem
could be modelled by

mX + uNsgnx + kx = F(1), (1.3)

where we assume F(¢) is a harmonically varying force and u and N are
the coefficient of friction and some prescribed static normal force
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respectively. If F < uN then there will clearly be no motion of mass m,
however when we reach F > uN continuous oscillatory motion will
occur (and the frictional force will change sign with X). This type of
damping does not necessarily always provide a limitation on resonant
amplitude and the reader is referred to the books of Lazan (1968) and
Nashif et al. (1985) for further insight.

Hysteretic damping is a form of material damping and this differs
from the damping forms discussed previously since these are essentially
the result of structural configuration. All elastic materials will give rise
to a ‘loading-unloading’ loop in the force—displacement or stress-strain
plane. This loop is called the hysteresis loop and the exact geometrical
nature of the loop depends on the material being investigated. The
important behavioural difference between viscous and hysteretic damp-
ing is that the former dissipates its cyclic energy linearly with frequency,
whereas the latter is independent of frequency and the damping is seen
as a complex stiffness constituent. So for complicated problems one can
assume a complex modulus which contains both a stiffness part (real)
and a damping part (imaginary), without having to differentiate clearly
between them in the physical problem.

This form of damping may be found in elastomeric and polymeric
compounds, and in a structural sense it can occur through impact in
gapped joints and also in some cases of joint slippage.

The fundamental damping quantity for the hysteretic case is the loss
factor 7, so we write the complex stiffness—damping modulus as

k' = k(1 + in) (1.4)
and in the case of a single degree of freedom problem we can put
mi + k'x = F(1). (1.5)

We can compare the frequency independence of hysteretic damping with
the strongly frequency dependent behaviour of the viscous case, as
modelled by the equation

mi + cx + kx = F(t). (1.6)

By integrating the two cyclic products of force and displacement we can
therefore arrive at the cyclic energy dissipation due to the two systems

Dy = nCQA %, (1.7)
Dy = wknB,?, (1.8)
where A, and B, are assumed particular solution amplitudes for the
viscous and the hysteretic cases respectively, and Dy and Dy are the

viscous and hysteretic cyclic energies. Figure 1.1 (after Nashif er al.,
1985) shows how the hysteretically damped response curves for a single



