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Preface to the second edition

I am grateful to the readers of the first edition who have made suggestions
for improvement. Apart from some minor corrections, the principal changes
are as follows.

The equation connecting the curvatures of four mutually tangent circles,
now known as the Descartes Circle Theorem (p. 14), is proved along the lines
suggested by Mr. Beecroft on pp. 91-96 of “The Lady’s and Gentleman’s
Diary for the year of our Lord 1842, being the second after Bissextile, de-
signed principally for the amusement and instruction of Students in Mathe-
matics: comprising many useful and entertaining particulars, interesting to
all persons engaged in that delightful pursuit.”

For similarity in the plane, a new treatment (pp. 73-76) was suggested by
A. L. Steger when he was a sophomore at the University of Toronto. For
similarity in space, a different treatment (p. 103) was suggested by Professor
Maria Wonenburger. A new exercise on p. 90 introduces the useful concept
of inversive distance. Another has been inserted on p. 127 to exhibit R.
Krasnodgbski’s drawings of symmetrical loxodromes.

Pages 203-208 have been revised so as to clarify the treatment of afjinities
(which preserve collinearity) and equiaffinities (which preserve area). The
new material includes some challenging exercises. For the discovery of finite
geometries (p. 237), credit has been given to von Staudt, who anticipated
Fano by 36 years.

Page 395 records the completion, in 1968, by G. Ringel and J. W. T.

Youngs, of a project begun by Heawood in 1890. The result is that we now
know, for every kind of surface the minimal number of colors that will suffice

for coloring every map on the surface, though for anyone dissatisfied with a
computer-generated proof, there remains a modicum of doubt in the case of
the sphere (or plane).

Answers are now given for practlcally all the exercises; a separate booklet
is no longer needed. One of the prettiest answers (p.453) was kindly sup-
plied by Professor P. Szasz of Budapest.

H.S.M. Coxeter

Toronto, Canada
December, 1980
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Preface to the
first edition

For the last thirty or forty years, most Americans have somehow lost in-
terest in geometry. The present book constitutes an attempt to revitalize
this sadly neglected subject.

The four parts correspond roughly to the four years of college work.
However, most of Part II can be read before Part I, and most of Part IV
before Part II1. The first eleven chapters (that is, Parts I and II) will pro-
vide a course for students who have some knowledge of Euclid and ele-
mentary analytic geometry but have not yet made up their minds to spe-
cialize in mathematics, or for enterprising high school teachers who wish to
see what is happening just beyond their usual curriculum. Part III deals
with the foundations of geometry, including projective geometry and hyper-
bolic non-Euclidean geometry. Part IV introduces differential geometry,
combinatorial topology, and four-dimensional Euclidean geometry.

In spite of the large number of cross references, each of the twenty-two
chapters is reasonably self-contained; many of them can be omitted on first
reading without spoiling one’s enjoyment of the rest. For instance, Chapters
1, 3, 6, 8, 13, and 17 would make a good short course. There are relevant
exercises at the end of almost every section; the hardest of them are pro-
vided with hints for their solution. (Answers to some of the exercises are
given at the end of the book. Answers to many of the remaining exercises
are provided in a separate booklet, available from the publisher upon re-
quest.) The unifying thread that runs through the whole work is the idea
of a group of transformations or, in a single word, symmetry.

The customary emphasis on analytic geometry is likely to give students
the impression that geometry is merely a part of algebra or of analysis. It
is refreshing to observe that there are some important instances (such as
the Argand diagram described in Chapter 9) in which geometrical ideas are
needed as essential tools in the development of these other branches of
mathematics. The scope of geometry was spectacularly broadened by Klein
in his Erlanger Programm (Erlangen program) of 1872, which stressed the
fact that, besides plane and solid Euclidean geometry, there are many other
geometries equally worthy of attention. For instance, many of Euclid’s own
propositions belong to the wider field of affine geometry, which is valid not
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x Preface to the First Edition

only in ordinary space but also in Minkowski’s space-time, so successfully
exploited by Einstein in his special theory of relativity.

Geometry is useful not only in algebra, analysis, and cosmology, but also
in kinematics and crystallography (where it is associated with the theory of
groups), in statistics (where finite geometries help in the design of experi-
ments), and even in botany. The subject of topology (Chapter 21) has been
developed so widely that it now stands on its own feet instead of being re-
garded as part of geometry; but it fits into the Erlangen program, and its
early stages have the added appeal of a famous unsolved problem: that of
deciding whether every possible map can be colored with four colors.

The material grew out of courses of lectures delivered at summer insti-
tutes for school teachers and others at Stillwater, Oklahoma; Lunenburg,
Nova Scotia; Ann Arbor, Michigan; Stanford, California; and Fredericton,
New Brunswick, along with several public lectures given to the Friends of
Scripta Mathematica in New York City by invitation of the late Professor
Jekuthiel Ginsburg. The most popular of these separate lectures was the
one on the golden section and phyllotaxis, which is embodied in Chapter 11.

Apart from the general emphasis on the idea of transformation and on
the desirability of spending some time in such unusual environments as af-
fine space and absolute space, the chief novelties are as follows: a simple
treatment of the orthocenter (§ 1.6); the use of dominoes to illustrate six of
the seventeen space groups of two-dimensional crystallography (§ 4.4); a
construction for the invariant point of a dilative reflection (§ 5.6); a descrip-
tion of the general circle-preserving transformation (§ 6.7) and of the spiral
similarity (§ 7.6); an “explanation” of phyllotaxis (§ 11.5); an “ordered”
treatment of Sylvester’s problem (§ 12.3); an economical system of axioms
for affine geometry (§ 13.1); an “absolute” treatment of rotation groups
(§ 15.4); an elementary treatment of the horosphere (§ 16.8) and of the ex-
treme ternary quadratic form (§ 18.4); the correction of a prevalent error
concerning the shape of the monkey saddle (§ 19.8); an application of geo-
desic polar coordinates to the foundations of hyperbolic trigonometry
(§ 20.6); the classification of regular maps on the sphere, projective plane,
torus, and Klein bottle (§ 21.3); and the suggestion of a statistical honey-
comb (§ 22.5). ‘

I offer sincere thanks to M. W. Al-Dhabhir, J. J. Burckhardt, Werner Fen-
chel, L. M. Kelly, Peter Scherk, and F. A. Sherk for critically reading various
chapters; also to H G. Forder, Martin Gardner, and C. J. Scriba for their
help in proofreading, to S. H. Gould, J. E. Littlewood, and J. L. Synge for
permission to quote certain passages from their published works, and to
M. C. Escher, I. Kitrosser, and the Royal Society of Canada for permission
to reproduce the plates.

H.S.M. Coxeter

Toronto, Canada
March, 1961



Mathematics possesses not only truth, but supreme beauty
—a beauty cold and austere, like that of sculpture,
without appeal to any part of our weaker nature . . .
sublimely pure, and capable of a stern perfection

such as only the greatest art can show.

BERTRAND RUSSELL (1872-1970)
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