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INTRODUCTION

Spaces of functions have been used since the late 19th century to form a framework
in which convergence of sequences of functions could be studied. Since then several
natural topologies have been frequently used to study function spaces. The purpose of
this book is to bring together the techniques used in studying the topological properties
of such function spaces and to organize and present the theory in a general setting. In
particular, a study is made of C(X,R), the space of all continuous functions from a
topological space X into a topological space R.

For almost any natural topology imposed on C(X,R), the topological properties of X
and R interact with the topological properties of C(X,R). One of the things which is
emphasized is the study of these interactions, especially the deduction of the topological
properties of C(X,R) from those of X and R. The two major classes of topologies on
C(X,R) which are studied are the set—open topologies and the uniform topologies. Each
chapter has a number of exercises, not only about these two classes of topologies, but
about other kinds of function space topologies found in the literature. Chapters I, II and
III contain basic properties and techniques, as well as classical theory. Chapters IV and
V have the characterizations of many topological properties of function spaces. Those in
Chapter IV are given in the more general setting of cardinal functions.

The range space throughout this book is denoted by R, and whenever the properties
of R are not important for the discussion, C(X,R) is abbreviated as C(X). in order to
eliminate pathologies and ensure that C(X,R) is large enough, all spaces are assumed to be
completely regular Hausdorff spaces, and R is assumed to contain a nontrivial path. The
symbol w denotes the first infinite ordinal number (which is the set of all natural

numbers), and R is used to indicate the space of real numbers with the usual topology.






Chapter 1

FUNCTION SPACE TOPOLOGIES

A concept which plays an important role is that of a network on a space. Let «
be a family of subsets of X. A nonempty family # of nonempty subsets of X is an
a-network on X provided that for each A € a and open neighborhood U of A there
exists a B € B such that A ¢ B ¢ U A network on X is an a-network on X
where « consists of the singleton subsets of X. A network on X is called a closed (or

compact) network on X provided each member is closed (or compact). Similarly a closed

(or compact) neighborhood base for X is a neighborhood base for X such that each

member is closed (or compact).

1. Set—open Topologies. If A € X and B € R, then the notation [A,B] is defined by

[A,B] = {f € C(X,R): [(A) c B}.
It is straightforward to check that

[AB, N B [AB,] N [AB,], and

ol =
[A; U Ay, B] = [A,B] N [A,,B]
If x € X and B C R, then [{x},B] is abreviated as [x,B].

A topology on C(XR) is called a set—open topology provided there is some closed

network a on X such that
{{A,V]: A € a and V is open in R}
is a subbase for the topology. In this case the function space having this topology is
denoted by Ca(X,R) or Ca(X)‘ In addition, if Y is a subspace of X, then Ca(Y,R)
denotes Cﬂ(Y,R) where 8 ={ANY:AE€E a}
For topological spaces X and Y, the notation X < Y means that X and Y have the
same underlying set and the topology on Y is finer than or equal to the topology on X.

With this notation, the following can be established.



Theorem 1.1.1. If « and @ are closed networks on X, then C_(X) < Cﬂ(X) if

and only if every member of « is contained in a finite union of members of £.

Proof. Let p: [0,1] = R be a path (continuous function) in R such that p(0) =
p(1), let f, be the constant function taking X to p(0), and let V. = Rp(1)}. Take
any A € a. Then [AV] is a neighborhood of fo in CE(X), so that there exists a
basic neighborhood W = [B,V,] n .. n [B )V | of f, in Cﬁ(X) which is contained in

[AV]. Let B =B, U ..U B . To show that A C B, suppose on the contrary that

1
there exists some x € ANB. Since X is completely regular, there exists a ¢ €
C(X,[0,1]) such that ¢(B) = {0} and ¢(x) = 1. Then pod € W while posp ¢
[AV], which is a contradiction. This establishes the necessity; the sufficiency is

immediate. =

There are two well-studied examples of set-open topologies. One is the point—open

topology, or topology of pointwise convergence, where the closed network on X is the

family of all nonempty finite subsets of X. This function space is denoted by Cp(X,R)
or Cp(X)‘ On the other hand, the other commonly used set—open topology is the

compact—open topology, or topology of compact convergence, where the closed network

on X is the family of all nonempty compact subsets of X. This function space is
denoted by C, (X,R) or Ck(X)'

The next couple of theorems give facts about the topology of pointwise convergence.
The proof of the first fact follows immediately from the definition of the product

topology, and the second fact follows from Theorem 1.1.1.

Theorem 1.1.2. The space Cp(X,R) is a dense subspace of e with the Tychonoff

product topology.

Theorem 1.1.3. If o« is any closed network on X, then CP(X) < Ca(X)'



Therefore the topology of pointwise convergence is the smallest set—open topology.
The largest set—open topology may be obtained by taking the family of all nonempty
closed subsets for the closed network. The function space having the largest set-—open
topology is denoted by CW(X,R) or CW(X). These special set—open topologies are then
related by

C_(X) < G (X) < C(X).

p w

These inequalities are only equalities for special X, as given by the following corollary to

Theorem 1.1.1.

Theorem 1.1.4. The space Cp(X) = Cy(X) if and only if every compact subset of X

is finite; and Cy (X) = C_ (X) if and only if X is compact.

The next theorem establishes the separation properties of set—open topologies.

Theorem 1.1.5. If a is a closed network on X, then C_(X) is a Hausdorff space.

Furthermore, if a is a compact network on X, then Ca(X) is completely regular.

Proof. The first part is immediate, so to show the second part, let f € [AV] (a
subbasic set suffices since a finite minimum of continuous functions is continuous). Now
there exists a ¥ € C(R|]0,1]) such that ¥(f(A)) = {0} and ¥(R\V) = {1}. Then
define ¢ € C(C_(X), [0,1]) by ¢(h) = sup{y(h(a)): a € A} for each h € C_(X).

It follows that ¢(f) = 0 and ¢{C_(X)YAV]) = {1}. =

Sometimes it is more convenient to work with basic open subsets of the range space
rather than with arbitrary open subsets. If some additional assumptions are made about
the closed network on X, then it is sufficient to use basic open sets in R to generate

the topology on CG(X,R). A closed network is called hereditarily closed provided that




every closed subset of a member is a member.

Theorem 1.1.6. If o« is a hereditarily closed, compact network on X and o is a

subbase for R, then {[A,S]: A € a and S € o} is a subbase for C_(XR).

Proof. Let A € a, let V be open in R, and let f € [A)V]. For each a € A,

there exists a finite subset o, C o such that f(a) € N{S: S € o} C V, and there

exists a neighborhood U, of a in X such that Ga C f_l(ﬂ{S: S € o,}). Since A is
compact, there exists a finite subset A’ of A such that S C U{Ua: a € A"} Then
define

W = n{ANU_S]: a € A’ and S € o},
which clearly contains f. To show that W C [A)V], let g € W and let x € A. Then

for some a € A’ , x € U, so that g(x) € N{S: S € oa} cV. =m

Additional algebraic structures on R induce corresponding structures on C(X,R). For
example, if R is a group with operation +, then for each fg € C(XR), f + g is defined
by (f + g)(x) = f(x) + g(x) for each x € X. This defines the induced group structure
on C(X,R).

Whenever o is a hereditarily closed, compact network on X and R is a locally
convex topological vector space, then Ca(X,R) is also a locally convex topological vector

space. Part of the proof of this is incorporated in the next theorem.

Theorem 1.1.7. If « is a hereditarily closed, compact network on X and R is a

topological group, then Ca(X,R) is a topological group.

Proof. Let the group operation be denoted by + as above, and start with f - g €
[AV]. Then for each a € A, there exist neighborhoods V, and W, of f(a) and g(a) such

that Va - Wa C V. Also for each a € A, there exists a closed neighborhood Na. of a in



X such that f(N) ¢ V_ and g(N)) € W,. Since A is compact, there exists a finite
subset A’ of A such that A C U{N,: a € A"}. Then define

S = N{ANN_,V]: 2 € A" } and

T = n{[ANN, W, |: a € A"},
which are neighborhoods of f and g in C_(X,R). Now it is easy to check that S - T C

[AV] =

As a result of Theorem 1.1.7, if a is a hereditarily closed, compact network on X
and R is a topological group, then Ca (X,R) is homogeneous. In this case it generally
suffices to work only with neighborhoods of the zero function fo. Furthermore, if o is
closed under finite unions and if B = [AI'VI] n..n [An’vn] is a basic neighborhood of
f

then A = A1 U ..u An € aand V =V, n .. N Vn contains 0, so that fO €

0’ 1

[AV] € B. Therefore in this case it suffices to work with sets of the form [A,V] which
contain the zero function. This discussion includes two of the most commonly used

function spaces, Cp(X,R) and C, (XR).

2. Uniform Topologies. Let a be a closed network on X, and let u be a compatible
(diagonal) uniformity on R. The topology induced on C(X,R) by the uniform structure
which is about to be defined on C(X,R) is the same whether a diagonal uniformity is used
on R or whether its corresponding covering uniformity is used. So all uniformities are
taken as diagonal uniformities.
For each A € a and M € pu, define
g’l(A) = {(f,g) € C(X) x C(X): for each x € A, (f(x), g(x)) € M}.

In the case that A = X, set M - I\AA(X) It is straightforward to check that the family
{l:fl(A): A€a, MEu} is a subbase for a uniformity on C(X). In fact if o is closed
under finite unions, then this family is a base for a uniformity on C(X). The space with
the topology induced by the uniformity generated by {l('l(A): A€a, Meypu} is

denoted by C #(X,R) or C (X). The topology induced in this manner is called the

M



uniform topology on « (with respect to p) or the topology of uniform convergence on «

(with respect to u). The open sets in C_  (X) can be described as the family of all

a,

subsets W of C(X) such that for all f € W, there exist A A, €« and Ml""’Mn €

10

p with

My (A ] N N M (AT € W,

where for each A € @ and M € p, MA)[f] is defined by

~

MA(T] = {g € O(X): (fg) € MA)}.

In the case that o« = {X}, then set CH(X) = C_ (X). The topology on C”(X) is

a, i

called the uniform topology (with respect to u) or the topology of uniform convergence

(with respect to p). In this case, {M: M € pu} is a base for the uniformity inducing

this topology, and a subset W of C”(X) is open provided that for each f € W there is

some M € p such that Mf] ¢ W.
As an illustration of these concepts, the proof is given for the sufficiency of the
following theorem. The necessity can be established in a manner similar to the proof of

Theorem 1.1.1.

Theorem 1.2.1. If a« and B are closed networks on X and u is a compatible

uniformity on R, then C_ #(X) < 0/3 l‘(X) if and only if every member of o is

contained in a finite union of members of f.

Proof. (of sufficiency). Let A € o, M € pu, and f € C(X). Then there exist

B,,..B, €B such that A ¢ B, u .. U B. But MB,U..UB ) = MB;) n .. N

i
MB,), so that M(B,)f] N .. n MBI = (MB,) n .. n MB))[f] = MB,U..UB)[f]

MA)[T].

The next fact follows immediately from definition.



Theorem 1.2.2. If o is a closed network on X and u is a compatible uniformity on
<
R, then Ca,u(X) < CII(X)'

The relation between set—open topologies and uniform topologies is given by the next

fundamental result.

Theorem 1.2.3. If « is a compact network on X and p is a compatible uniformity

A

on R, then C (X) < C_ #(X)‘ If, in addition, « is hereditarily closed, then C_(X)
ayu(X).

Proof. Let A € a, let V be open in R, and let f € [AV] For each a € A,
there exists an M, € pu such that M[f(a)] € V; choose N € p such that N oN cC

M,. Now f(A) is compact, so there exists a finite subset A’ of A such that f(A) C

U{N[f(a): a € A"}. Then define N = N{N_: a € A"}, To show that N(A)[f] € [AV],

let g € 1/\\1(A) and let x € A. There exists some a € A’ with f(x) € N [f(a)], so
that (f(a),f(x)) € N,.  Since (f(x)g(x)) € N c N_, then (f(a)g(x)) € N,oN < M.
Therefore g(x) € Ma[f(a)] C V, so that g € [AV].

For the reverse inequality, let A € «a, let M € g, and let f €C(X). Let N be a
closed and symmetric element of u such that NoNoN € M. Again since f(A) is compact,
there exists a finite subset A’ of A so that f(A) c U{N[f(a); a € A’}. For each a €
A", define A, = A n f-l(N[f(a.)]), which is in « since « is hereditarily closed; also
define V, to be the interior of (NoN)[f(a). Finally define W = N{A_V, a€A’},

which is open in CG(X). Since V_  contains Nlf(a)] for each a € A', then f € W.

To see that W c M(A)[f], let g € W and let x € A. There exists some a € A’, with
f(x) € Nf(a)] so that (f(a), f(x)) € N. Also g(x) € V_  cC (NoN)[f(a)], so that

(f(a),g(x)) € NoN. Then since N is symmetric, (f(x),g(x)) € NoNoN < M, and



thus g € 1/\\4(A)[f] (]

In particular, it follows from Theorem 1.2.3 that the compact—open topology is the
same as the topology of uniform convergence on compact sets (independent of the

uniformity used). Also Theorems 1.2.2 and 1.2.3 give the following.

Theorem 1.2.4. If a is a compact network on X and pu is a compatible uniformity

on R, then C (X) < C  (X).

[
It is of interest to know when the inequality in Theorem 1.2.4 is an equality. One

answer is given by the next theorem.

Theorem 1.2.5. A space X is compact if and only if CI‘(X) = Ck(X) for every
compatible uniformity g on R.

Proof. If X is compact and a = {X}, then by Theorem 1.2.1, CI‘(X) = C_(X)

a,p

< < =
< Ck,u(x)‘ Also Ck,#(X) < C”(X) by Theorem 1.2.2, so that C”(X) Ck,ﬂ(X).

But Theorem 1.2.3 says that C #(X) = Ck(X)A The converse follows from Theorem

1.2.1. =

A special kind of uniform topology is the supremum metric topology. In this case the

range space R must have a compatible metric p, which can be chosen to be bounded.
This metric on R induces a metric p on C(X) defined by
p(fg) = sup{p(f(x)g(x)): x € X},
which is called the supremum metric. If p is complete, then p is also complete.
The €-balls in R with respect to metric p are denoted by Bp(x,e) or B(x,€),
while those in C(X) with respect to metric p are denoted by the similar notation

Bp(f,e) or B(f,e). Then {Bp(f,e): f € CX) and € > 0} is a base for some
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topology on C(X) called the supremum metric topology. The resulting topological space is
denoted by Cp(X,R) or Cp(X).

Every metric naturally induces a uniformity. It turns out that the supremum metric
topology is equal to the uniform topology with respect to the uniformity induced by this

metric. The next theorem makes this precise.

Theorem 1.2.6. For any space X, if p is a compatible bounded metric on R and if pu

is the uniformity on R induced by p, then Cp(X,R) = C“(X,R).

Proof. Let f € C(X) and € > 0 be given. For each § > 0, let Mg = {(st) €

RxR:  p(st) < 6} Then the family {M;: §>0} is a base for p. To show that

~

M€/2[f] C B(f,e), let g € M€/2[f]. Then (fg) € M, /g, so that for every x €
X, (f(x)g(x)) € M€/2; or p(f(x)g(x)) < €/2. But then p(fg) < €/2 < €, so

that g € B(f,€). This establishes that Cp(X,R) < C“(X,R).
For the reverse inequality, let f € C(X) and 0<e<1l. To show that B(f,e) cC
M,[f], let g € B(f,e). Then 5(fg) < €, so that p(f(x)g(x)) < € for all x € X

But then (f(x)g(x)) € M, for all x € X, so that (fg) € M,; and thus g € M_[f].

If a is a closed network on X and p is a compatible bounded metric on R, then

C X,R) is defined as C X,R), where u is the uniformity on R induced by p.

a,p( a,u(

Then for a hereditarily closed, compact network « on X, C, p(X,R) = C,(XR)
This means that for such a, sets of the following form are basic open sets. For each
A € a, f € C(X,R) and €>0, define

<A[f,e> = {gEC(X,R): for each a€A, p(f(a)g(a))<e}
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When R is metrizable, use of this kind of basic open set in CG(X,R) Is sometimes more
convenient.

For a metric space R, the topology on Cp(X,R) is dependent on the choice of
compatible metric p on R. That is, different compatible metrics on R may generate
different supremum metric topologies on C(X,R). This is illustrated by the following

example.

Example 1.2.7. Let R = R and let p be the usual metric on R bounded by 1.

That is, p(s,t) = min(1,1s-t1}. Also let ¢ be the metric on R defined by

U(Svt’)=| s - b )
1+1s1 1+1¢61

which is compatible with the usual topology. To prove that Cp(]R) * CU(IR), let f

€ C(R) be the identity function, and for each n € w let fHEC(!R) be defined by

fn(x) =xif x < n and fn(x) =nif x 2 n. Then for each n, Z)(f,fn) = 1; while if

X 2 n,
f f _ X n _ X—-n 1
o(f(x),f(x)) = = = < s
. 1+x 1+n (L+n) (1+x) l1+n
so that G(f,fn) B by af % Therefore for every n, BU(f,l/n) is not contained in
1+n
Bp(f,l).

This example also shows that different compatible uniformities on R may generate
different uniform topologies on C(XR). A natural question is: when do compatible
uniformities (or metrics) on R generate the same topology on C(X,R)? If X is compact,
then by Theorem 1.2.5, all compatible uniformities on R generate the compact—open
topology on C(X,R). In particular, if X is compact and p is a compatible bounded metric
on R, then Cp(X,R) = Ck(X,R). On the other hand, if R is compact, then there is
only one compatible uniformity on R, so that all compatible uniformities on R (and hence
by Theorem 1.2.6, all compatible bounded metrics on R) generate the same topology on
C(X,R). Although in this latter case, the topology generated on C(X,R) may not be the
compact—open topology.

For a compatible uniformity u on R, C#(X,R) is homogeneous only in special cases.



