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PREFACE TO THE SECOND EDITION

The fifteen years which have elapsed since the publication of the
first edition have been noteworthy for the solution of some remark-
able problems which David Hilbert posed in a famous lecture at,
the beginning of the century, and in this new edition I have taken
the opportunity to draw attention to these problems and to make
the consequent changes in the text which their solution makes
necessary.

Amongst these problems is the tenth in Hilbert’s list of 23, the
problem of determining which integral polynomials have integral
solutions. Another is the problem of showing that four colours
suffice to colour any map.

The existing chapter on sentence logic and informal set theory
has been supplemented by a new chapter on predicate logic and
axiomatic set theory.

A further major change is the introduction of numerous sets of
exercises with detailed solutions. |



PREFACE

THE title of this book Fundamental Concepts of Mathematics
correctly describes one aim of the book, to give an account of
some of the notions which play a fundamental part in modern
mathematics. The book makes no claim to be exhaustive and
what has been omitted is not thereby judged to be of less impor-
tance; I have written about the ideas which interest me most at
the moment. The class of readers for whom the book is intended
is rather more difficult to specify. Certainly I am not writing for
the professional mathematician, who does not need the help I try
to give the reader. Nor am I writing for the student who is seeking
training in a technique. The cultivated amateur is one whose
needs I had in mind, but above all this account is intended for
teachers of mathematics who feel that their background knowledge
is out of date, and for teachers in training. There is a great hunger
in the world for mathematicians and a great hunger for mathe-
matics, and both these needs can be met only by means of an
immense increase in the number of teachers of mathematics with
a thorough comprehension of fundamental concepts.

R.L. GOODSTEIN
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CHAPTER1

NUMBERS FOR COUNTING

THE whole structure of mathematics, rich in its three thousand
years of development and with an almost bewildering variety
of growing points, has both its foundation and its origin in the
numbers with which we count.

What do we do when we count the objects in a collection? Our
first answer might be that we use the numbers as labels, and give
each object in turn a label, one, two, three, and so on, just as we
.- name our children. To make the situation more definite let us
suppose we have a stock of number labels, from which we draw
the numbers to be attached to the objects counted. When each of
the objects has been assigned its label, what has been accomplished,
apart, that is, from just affixing the labels? Can we say that we
have now found out the number of objects in the collection, that
this number is that on the last label we used? For instance, let me
count a row of squares:

ey e B < gt o B o

I place a numeral in éach square, thus:

bbb ol Jasqf2]« ol aldos (8] ed 2

and say that there are seven squares in'the row. But why did I place
just these numerals in the squares? Why did I not perhaps fill the
squares in this way:

s L e v o o K

Counting therefore cannot be simply a process of naming. Our
next suggestion may be that the labels must be kept, and used,
in a definite order. That the label 1 must be used first, then the

1



2 FUNDAMENTAL CONCEPTS OF MATHEMATICS

label 2, and so on. This would safeguard us against the error we
committed above, but how is the order of the labels to be deter-
mined? We might of course rely upon an order established by
custom, as with the letters of the alphabet; in fact both the Greeks
and the Hebrews uscd the letters of their alphabets as number
labels in this way. Thus we might label the row of squares with
letters:

1 [] [ [df el sl i

and say that we have g squares, the established order of the letters
of the alphabet guarding us against error. For counting sufficiently
small collections such a procedure would be adequate, but it does
not take us to the heart of the matter. Our stock of labels is ne-
cessarily limited, yet we know that we can number any collection,
however great. And the need to commit to memory, or record in
some other form, an established order of number names becomes
increasingly burdepsome as the collection of number labels in-
creases. Concealed beneath our counting process there is in fact
a remarkable mechanism for generating numbers as large as we
like and for ordering them automatically. The familiar process
of countmg is really a combination of two operations. One of these
is a number generating process and the other a process of trans-
lation or abbreviation. To separate these two.aspects of counting,
let us start by recognising the number names: ‘“two’’, ‘“‘three”’,
“four”’, and so on, as abbreviations for ‘“one and one”, “two and
one”’, i.e. “one and one and one’’, ‘“three and one”, and so on.
Thus one part of counting consists in reciting the definitions “one
and one is two”’, “‘two and one is three”, ‘“‘three and one is four”,
and so on, only, in counting, we do not repeat the whole of the
definition, we just say one, two, three, ...” omitting the ‘“‘and
one’’ or rather replacing it by looking at the object counted, or by
touching it. The other part of the process of counting is a process of
copying the objects counted, or matching them, by dots, or strokes,
or match sticks, or words. Thus counting may be said to have ori-
ginated in the practice of making a copy of a collection, perhapsin
pebbles on the ground, or in strokes on sand, or cuts in a length of
wood ; but this making a copy is by no means the whole of counting.
The essential step lies in organising the copy into a readily identi-
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fiable whole, as we do when we translate “one and one” into “two”,
“one and one and one’’ into “three’’, and so on. It is instructive to
look at this organising process in other settings. Instead of using
number words, let us work with dot patterns, named according to
the following schemc:

one two three four five six seven

cight nine ten

Faced with a row of dots

we scek to organize the dots into one of the named patterns to

determine its number. This bears a certain relationship to counting,

but lacks one cssential feature; counting is systematic, and is~
cntirely free from trial and error, but with the above dot patterns

we must try cach pattern afresh, to see which we can make. This

is because the dot patterns have no internal connections, we do

not pass from one to the next by adding a fresh dot, as we pass

from “one and oné” to “‘two’ and from “two and one” to “‘three’

and so on by adding one. We can remedy this by redesigning the

patterns:

onc two three four five six

seven eight nine ten

Each pattern is now contained in its successor, and to count a
row of dots we form the patterns in turn, adding one dot at a time
until the collection of dots is exhausted. If we work with stick
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patterns instead of dots we can produce patterns which bear some
resemblance to the arabic numerals themselves. Probably the set
which bears the closest resemblance is this:

l_ljleIEDBa

1 2 3 4 5

Surprising though the resemblance is, there is no historical evi-
dence of a connection between the arabic numerals and stick
patterns, but the patterns themselves may nevertheless prove of
value in teaching children to coant and in introducing them to the
arabic numerals. The child would make the pattern in match
sticks, and name it, before learning to write the arabic numeral.
Stick pattern making would provide an activity to accompany the
learning of the definitions ‘‘one and one is two”’, “two and one is
three”, and so on, and would provide both a visual and a tactile
aid.

The use of stick patterns shows how curious an operation coun-
ting would be if it really consisted in assigning a pattern (num-
ber name) not to the whole collection but to each separate object.
Thus to count the row of sticks

b debtol b

instead of organising the sticks into the single pattern

5

we should need a stock of sticks from which to draw twenty-one
sticks just to count six, as the following diagram shows.

b stk vt 4 e pehosar Bt eod

T TR




NUMBERS FOR COUNTING 5
Addition

After counting, the next operation of arithmetic is addition. Addi-
tion of numbers may be thought of as uniting two collections.
Thus to add two and three, we unite the collections .., ... to form

and count the new collection. It soon becomes apparent that if we

start with one collection in pattern form, we can perform addition
without:having to count the united collection; we simply exhaust
the segfdnd collection, a stick at a time, to make fresh patterns
from the pattern of the first collection. Thus to add five and three
we start with the pattern five and three spare sticks:

A

and form in turn

AEE e

showing that the sum is eight. Translated into words the addition
of five and three consists in the steps:

five and (one and one and one)
% (five and one) and (one and one)

which is six and (one and one)
and this is

(six and one) and one
that is seven and one
which is eight.

I have used brackets to help the eye follow the transfer of a ‘one’
from one collection to the other.
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The fact that the order of addition is irrclevant may most
readily be seen by setting out the objeets of the collections to be
united in a row. For instance to show that the result of adding
three to five is the same as the result of adding five to three, we
set out collections of five and three side by side:

Hoxdxions X eiceine

reading from left to right we have five to which three is added, but
reading from right to left we have three to which five is added.
The fact that the order in which addition is performed is irrelevant
is usually expressed by saying that addition is commutative.

In stating general properties of numbers, like the commutative
property of addition, it is very convenient to have a symbol to
express the idea of “any number”. In suitable contexts we can
usc single letters for this purpose, generally letters from the end
of the alphabet. Instead of talking about “a sum of two numbers”’
we write “z +- y”’, the plus sign Standing as usual for addition
and the “z” and “y” each standing for any numeral. We use
two letters “2”” and “y” rather than just “z”, to avoid suggesting
that we are considering a sum of the same two numbers. The
expression z+y

stands for the sum of any two numbers whatever.

The x and the y arc like blank squares on an income tax form,
which are to be filled by numerals. The commutative property of
addition may now be expressed by the equation

sty=y+a

the equals sign “="" between “z + y”’ and “y + 2 affirming that
the two numbers between which it stands (or rather the numbers
obtained by filling in the blanks) are the same. Of course “z’’ and
“y” are not themselves numerals; their role is the same as that of
words like “he” and “she” in language, which stand in place of
names, but are not themselves names. Since “he¢” is a pronoun,

“z” and “y” in the equation
r+y=y+=x

may be called pronumerals. But in fact the parallel is not an exact

one, for in the equation
r+y=y+=
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€0

we may replace “z” and “y” by any numerals we please, whereas

in common usage, ‘‘he’’ refers to a particular person in a particular

context. The equation
2 zty-yte

summarizes all such instances of the commutative property of

addition as

2+3=3+2,4+5=5+4,2+5=5+2, ete.

The equation 2 + 3 =3 + 9 does not of course say that 2 + 3
and 3 + 2 are the same sign — they obviously are not — but that
each denotes the same.number, or in a sense we shall later explain,
that each may be transformed into the other.

Let us repeat the process whereby we added three to five, taking
this time any number z in place of five and writing numerals in
place of words:

z+ 3
— x + (2 + 1), using the definition 3 =2 + 1,
=(x+1)+ 2, transferring a “+ 1”7 from 2 to x,
=@@+1)+@1+1)
=(x+1)+1)+1, transferring “+ 1" again.

If we now fill in any numeral for the z, we have before us the sum
of that numeral and 3. For instance, with “6” for “z’’:

6+3=(6+1)+1)+1.

Ifwenowusethedeﬁnition36+1=7,7+1=8,8+1=-—-9
we arrive at the result 6+3-9

Of course the chain of definitions 1 + 1 = 2,...,8+.1 =9, may
be continued as far as we please, but, as is well known, the
numerals after 9 are not individual signs but are compoundéd of the
numerals 1 to 9, by means of a most ingenious device, positional
notation, according to which the number a numeral denotes de-
pends upon the position the numeral occupies. Positional notation
is most easily described in terms of the bead frames from which it
originated.

Let us suppose that we are going to match some collection in
beads, storing the beads on a wire. We choose a wire which can
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hold exactly ten beads. At first we might use a great many wires
in exactly the same way; we fill the wires and store each full wire
until the whole collection has been matched. This is very uneconom-
ical both in beads and wires, and one day it occurred to some one
that it was not really necessary to store the full wires, provided
that we matched the full wires by beads on another wire. Now
we should need only two wires, one to hold the beads which we
match with the given collection, and another to hold the beads
which match the full wires. Instead of recording a collection of
thirty-four by means of three full wires, and four over

we introduce an upright wire on which we match the full wires
by additional beads, and the record now takes the form

i —0—9—9—0

which records 3 full wires and 4. This two-wire device would be
adequate for quite small collections, but faced with a large col-
lection (of several hundred, say) we should find the single upright
wire insufficient, and be obliged to introduce a third wire on
which we placed beads to match the full upright wires. Thus for
instance, using only wires which hold ten beads, a collection of
two hundred and seventy-four would be recorded in the form

e—e—e—6—0—6—0—
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Each bead on the sloping wire represents a full upright wire, and
since each bead on an upright wire represents a full horizontal
wire, it follows that a bead on the sloping wire represents the follow-
ing array of beads

in which we have attached a full horizontal row of beads to each
bead on the full vertical wire. Thus a single bead on the sloping
wire represents a full ten by ten array of beads, a hundred beads
in all. Matching collections of more than ten hundred would ne-
cessitate the introduction of a fourth wire, and by this time no
doubt it would have been realised that the special devices of
horizontal, upright and sloping wires are quite unnecessary and
that the relative positions of the wires alone serve to distinguish
them, and we arrive at the abacus with vertical wires.

.

‘

g

% o oot
We have represented the result of matching a collection of two
and four-tens and three-ten-tens and two-ten-ten-tens (i.e. two
thousand, three hundred and forty-two). In talking about the
abacus, the right-hand end wire is called the unit wire, then from
right to left the successive wires are known as the tens wire,
hundreds wire, thousands wire, ten-thousands wire. Of course the
number words one, two, three, four themselves provide a more

logical nomenclature (a fact which we shall exploit when we come
to the study of indices) the tens wire being one from the end, the




