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Abstract *

[e]
Let K be a cone with nonempty interior K in a Banach space X and

(o] (o}
f: K - K a map. This paper treats questions like the following: Does f have a

suitably normalized eigenvector u in the interior of K? Is the normalized

eigenvector u unique? If f(tu) = tu for every t > 0, is it true that for every

o
x ¢ K there exists A(x) > 0 such that lim fk(x) = A(x)u? What can be said

k- o0
o
about the structure of the set of eigenvectors of f in K? The class of maps
studied includes maps which are homogeneous of degree one and preserve the partial
ordering induced by K. Applications are made to the theory of means and their
iterates. In a subsequent paper applications are given to so—called D-A-D theorems

and to some questions in mathematical biology.
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INTRODUCTION

By a cone K (with vertex 0) in a Banach space X we shall mean a
closed, convex subset of X such that (a) tK ¢ K for all t > 0 and (b) if

x € K-{0}, then —x ¢ K. Examples of cones are provided by
K = {x € [Rn:xi 20 for 1 <i<n}

(which we shall call the standard cone in R") and by the set of positive
semidefinite, self-adjoint linear operators on a Hilbert space. Every cone K
induces a partial ordering on X by x <y if and only if y—x € K.

If D is a subset of a cone K in a Banach space X, a map
f:D - X is called "order—preserving" if for all x, y € D such that x <y one
has f(x) < f(y). If tD c D for all t > 0, f is called "homogeneous of degree
one" if f(tx) = tf(x) for all t > 0 and x € D.

We shall be interested in a variety of questions about maps which are
homogeneous of degree one and order—preserving. Actually, many of our theorems
will treat more general classes of functions, but the basic difficulties are already
apparent for certain order—preserving maps which are homogeneous of degree one.

In fact, it may be worthwhile to describe a concrete class of maps of the
standard cone K in R™. Most of the questions we shall describe below are
already nontrivial for this class. Recall that a "probability vector" o € R" is a

vector such that o; >0 for 1 <i<n and

If r 1is a real number (possibly r = 0) and o a probability vector,

[e]
define M., K- R by

Received by the editors October 30, 1987.
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2 ROGER NUSSBAUM

=

n
M = [ Yo r.]
I‘a(x) j:laJxJ

o
If r=0 and x € K, define

ag.
x.J = lim M_ (x).
ro

M, (x) =
0o 1 -0

=E]

J

One can prove that Mw extends continuously to K. For each i, 1 <i < n, let
I, be a nonempty finite collection of ordered pairs (r,0) (r a real number and

o a probability vector). For each (r,0) € T, let c be a positive real and

Iro
define f:K - [0,) by

fi(x) = (r,az);EI‘iciw Mw(x). (0.1)

Define f:K - K to be a map whose i*" coordinate is given by (0.1). We shall

say that fe M if fK -+ K can be written in the form (0.1) and f ¢ M_ if f

can be written in the form (0.1) in such a way that r < 0 for all (r,0) € L,

1 <i<n Similarly, we shall write fe M, if r>0 for all (r,0) € T},
o] o]

1 <i < n. Note that linear maps L such that L(K) ¢ K lie in M, nM.

Finally, we shall define M (or M_ or M 4 respectively) to be the smallest set

of maps which contains M (or M_ or M + respectively) and is closed under

composition of functions, addition and multiplication by positive scalars. Questions
about M are a primary impetus for this paper.

We are interested in this paper in the following questions (among others):

(1) I K is a cone with nonempty interior in a Banach space X and

o o
f:K » K is a continuous map (possibly homogeneous of degree one and

[o] o
order—preserving), does f have an eigenvector in K, i.e, does there exist x € K

such that f(x) = Ax for some X > 07 Notice that if X is finite dimensional

and f extends continuously to K, then an application of Brouwer's fixed point
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theorem implies that for each R > 0 f has an eigenvector y € K with
o
llyll = R. The problem is that y may not lie in K. In fact, even for functions

o
f € M_, the question of whether f has an eigenvector in K is frequently a

delicate one. With some notable exceptions, this difficulty has not been recognized.

o]
(2) Assuming that f has an eigenvector u € K, normalized in some way,

is this normalized eigenvector unique? For example, does f have a unique

(o]
eigenvector of norm one in K? Notice that f may well have other eigenvectors in

(o]
0K; uniqueness refers to eigenvectors in K. The map f(x,y) = [%X, M],

familiar from the arithmetic-geometric mean of Gauss and Lagrange, has the

o
eigenvector (1,1) in K, which is unique to within scalar multiples; but (1,0) is

also an eigenvector in K.
o
(3) If f has a unique eigenvector u € K of norm one and if one defines

f]
8(x) = i
o]
is it true that for all x € K,
lim gk(x) = u?
k- o0
o (o]

(4) Suppose that f is a map of K to K and that, for some X > 0, §
o]
= {x € K: f(x) = Ax} is nonempty. What can one say about the structure of S?

(o]
Does it have the same (trivial) homotopy type as K? If g(x) = f(x)l[f(x)||—l and

o
8 = {x e KJx|| =1 and g(x) = x},

what can one say about the structure of Sl?
o [o]
(5) If g is as above, g has no fixed points in K, and x € K, what



4 ROGER NUSSBAUM

can one say about the behavior of gk(x) as k approaches infinity?

o] o
(6) Suppose that f is a map of K to K and that

(o] o
S = {u € K:f(u) = u} is nonempty. Is it true that for every x € K there exists

u=u € S such that

lim f5(x) =

k-0

u ?
X

o,
If S = {tu:t > 0} for some fixed u € K, the question becomes whether, for each

o

x € K, there exists A(x) > 0 such that

lim fk(x) = AMx)u.

k-

This paper represents an attempt to answer the above questions and to begin
applications of these answers to some problems of interest. The original motivation
for our work came from some questions in population biology [25,26,39,49,60,66,73]
and from problems concerning "means and their iterates"
(2,3,8,9,12,13,22,27,28,29,35,50,63,65,79] and "D-A-D theorems"
[4,15,16,30,32,36,43,48,53,54,55,76,77).  Although we shall say something about means
and their iterates, considerations of length have forced us to defer other applications

to a later paper [84].

(o]
Question one, or the problem of the existence of an eigenvector in K, is

perhaps the central question in our work and the irreducible analytic difficulty. Of
course the question is easily answered in some instances (see [84] for examples), but
in general the problem appears highly nontrivial. In any event, for the most part we
shall not consider question one here, but shall defer it to [84], which is an immediate

sequel to this paper. Section two of [84] provides some conditions under which

0
functions f € 4 have an eigenvector in K; the theorems there generalize some

preliminary results in Section four of [60]. Section three of [84] considers at length
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the question of whether a function f € 4 (or in a similar class of maps) has an

0
eigenvector in K. Again, in Section four of [84], which treats D-A-D theorems and

their generalizations, the central question which is treated is the existence of an

eigenvector in the interior of a cone for an appropriate nonlinear map.

(o]
If, however, the map f has an eigenvector in K, our theorems provide;

quite general answers to questions two and three. In questions four, five and six, we
essentially assume that the answer to question one is known; and while open
problems remain, our theorems provide satisfactory answers in many cases.

There are at least two closely related questions which we shall not consider
here. First, one can consider the analogues of questions one, two and three for
ordinary differential equations. Indeed, some of the population biology literature
[70, 73] is concerned with precisely this point. In his Rutger's Ph.D. dissertation
[82], K. Wysocki has shown that the results of Section 2 of this paper can be used
to study autonomous ordinary differential equations in cones. The following is a very
special case of Wysocki's theorem: Suppose that K is the standard cone in R™

1

o
and that f:K - R" is C" and homogeneous of degree one. Assume that there

[e]

o
exists a > 0 such that (f + oI)(K) ¢ K and f’(x) + ol is a primitive,
o
non-negative matrix for all x € K. Finally, suppose that f has an eigenvector u

[e] o]
of norm one in K. Then for any x, € K, if x(t) = x(t;xo) is the solution of

o

x(t) 1is defined and in K for all t > 0 and

lim x(t)[x®)] ™ = u.

t= o0

A second question which will not be considered here is what are called "weak
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ergodic theorems" in the population biology literature (see [26], [39] and [38]). In
(o]
weak ergodic theorems one considers the behavior of Fn(x), x € K, where

o o

fj:K -+ K, fj lies in some given class S of maps, and

By = fnfn_1 SRR
If, for example, S = M, the existing literature is, in general, inapplicable.
However, as will be shown in another paper, the ideas of this paper can be extended
to yield such weak ergodic theorems.

There is an enormous literature concerning linear and nonlinear maps of cones,
and there is a large subliterature in which the so—called Hilbert's projective metric or
its variants (see [6, 78]) have been used in the study of linear and nonlinear cone
maps. We refer, for example, to the work of Bushell (18, 21], Potter [67, 68] and
Krause [46] on nonlinear maps and to an extensive linear theory beginning with
G. Birkhoff [9, 10] and E. Hopf [42]. Bushell's expository article [18] still provides
an excellent introduction. Existing nonlinear theory is inadequate for our
applications, the technical reason being that while our maps are frequently
nonexpansive with respect to Hilbert's projective metric d they are often not strict
contractions with respect to d.

Since this paper is long, it may be worthwhile to summarize its contents. In
the first half of Section 1 we attempt to make the paper as self-contained as possible
by summarizing relevant facts and definitions about cones, cone mappings, Hilbert's
projective metric d and a variant of Hilbert's projective metric due to
A.C. Thompson [78]. This material can be safely omitted by the expert. The
second half of Section 1 contains some geometric results about Hilbert's projective
metric d and Thompson's variant d. In particular a number of propositions
concerning minimal geodesics with respect to d or d are proved, and the reader
may find it interesting that Proposition 1.10 has connections to linear operator

theory. These results are elementary but appear to be new and are needed later.
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The first few pages of Section 2 summarize known results from the theory of

linear, order—preserving maps and can be omitted by experts. Theorem 2.5 provides

o o

an answer to Question 2. If K is a finite dimensional cone and f:K - K is
o
order—preserving, and homogeneous of degree one and f is ¢! on K with fr(x)

(o]
irreducible for all x € K, then Theorem 2.5 reduces to the assertion that f has
o]
at most one (to within scalar multiples) eigenvector in K. Theorem 2.7 provides an

answer to Question 3. In the special case just described, Theorem 2.7 implies that if
(e}
f has an eigenvector u € K with |ju|| = 1, f’(u) is primitive and f is cl

o]
near u, then for all x € K one has

u = lim )KL
k-

A crucial role in the theorems of Section 2 is played by purely linear results
which may have some independent interest. Lemmas 2.6 and 2.7 provide information

about the spectrum of A, where
A(x) = L(x) - ¥(Lx)u

and L is a given positive linear map, % is a positive linear functional and

(o]
u € K is such that %(u) = 1 and Lu < u. Essentially best possible results are

given which insure that the spectral radius of A is strictly less than one. The

reader should also note Corollary 2.4, which describes a situation under which fk(x)

(o]
approaches a point in JK for all x € K.

Section 3 would perhaps better be titled "means and their iterates", after the

excellent survey article [3]. If f:Ii - 12 is homogeneous of degree one and
order—preserving, Theorem 3.2 provides a very general positive answer to Question 6.
However, there are also important examples in which the function is not
order—preserving and possibly not homogeneous of degree one but for which

Question 6 has a positive answer. Propositions 3.1 — 3.4 treat such situations. In
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generalizing the arithmetic—geometric mean and its extensions to bounded linear
operators, the author and Joel Cohen [63] have encountered situations in which the
map f is not order—preserving and has a fixed point set of dimension greater than
one.

Section 4 treats Question 4 and Question 5. The basic idea is that while
Hilbert's projective metric d is not a norm, it enjoys enough convexity properties
that certain arguments from the theory of nonexpansive maps in Banach spaces can
be modified to our situation. A difficulty is that in the most important examples,
d is analogous.to a norm which is not strictly convex. Theorem 4.2 provides an
answer to Question 5 and Theorems 4.5 — 4.7 give answers to Question 4.

We should note, finally, that many of the results of this paper were

summarized in [62].



I. BASIC PROPERTIES OF HILBERT'S PROJECTIVE METRIC

In this section we shall recall some definitions and notations and establish some
geometrical results which will be useful later.

If K is a closed convex subset of a Banach space X, we shall say that K
is a cone (with vertex at 0) if (a) x € K and x # 0 implies that —x ¢ K
and (b) x € K and A a non-negative real implies that Ax € K. Some authors
do not demand that cones be closed or that condition (a) hold. A cone K induces

a partial ordering on X by

x <y if and only if y—x € K. (1.1)

A cone K is called "normal" if there exists a constant A such that for all x

and y in K with 0 < x <y one has

Ixll < A llyll, (1.2)
where ||-|| is the norm on X. It is known (see [71], Chapter 5, Section 3,
p. 215) that if K is a normal cone in a Banach space X with norm |||, then
there exists an equivalent norm |-| such that
0 < x <y implies |x| < |yl (1.3)

A norm which satisfies equation (1.3) is called "monotonic". If S is a compact

Hausdorff space, X = C(S), the space of continuous real-valued functions with

x|l = sup |x(s)]
SES
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and K is the cone of non-negative functions, K 1is a normal cone. We note for
future reference that we shall always think of R" as C(S), where S = {1,2,...n}
and S is given the discrete topology. If (X,s) is a measure space,
X = Lp(Z,u), 1 <p £ w, and the standard norm on X is used, then the set of
non-negative functions in X provides another example of a normal cone.

If K is a cone in a Banach space X and if there exists a finite dimensional
Banach space Y such that K c Y, then K will be called "finite dimensional".
The next proposition is well-known and can be proved by a simple compactness

argument which is left to the reader.

Proposition 1.1: Any finite dimensional cone K is normal.
A cone K in a Banach space X is called "total" if X is the closure of

K-K, where
K-K = {x-y:x,y € K}.

The cone is "reproducing" if X = K-K. If K is a cone in a Banach space X,
*
X will always denote the Banach space of continuous linear functionals on X and

K~ will be defined by
* *
K ={yeX;¥(x) >0 for all x € K}.

It will sometimes be convenient to use "pairing notation", i.e., (¥x) = ¢(x) for
P € X* and x € X. It is easy to prove that K* is a cone if K is total, but
even if K* is not a cone (condition (a) in the definition of cones may fail) the
above definitions of "total" and "reproducing" still make sense. Classical theorems
(see [71]) assert that a cone K in a Banach space X is normal if and only if

* *
K is reproducing, and K is normal if and only if K is reproducing.
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We shall be interested later in the cone of positive semi—definite operators in a
Hilbert space. Thus let H be a real Hilbert space with inner product ( , ) and

let X be the Banach space of bounded linear operators L:H - H with
LI = sup{|lLx]:x € H and [x|| = 1}.
Let K be the set of positive semidefinite, self-adjoint operators in X, so

K = {A:A € X, A is self-adjoint and

(Ax,x) > 0 for all x € H}. (1.4)

Recall that if A is bounded and self-adjoint and if o(A) denotes the spectrum of
the complexification of A, then o¢(A) = {A € R:A\-A is not one—one and

onto H}, and one has

AL = inf{{Axx):||x|| = 1} € o(A),

Ay = sup{(Ax,x):“x” = 1} € o(A), (1.5)

{12}

and

Al = sup{|(Axx)|:]Ix|| = 1}. (1.6)

Proposition 1.2: The set K of non-negative definite self-adjoint operators defined

in equation (1.4) is a normal cone.

Proof. K is clearly closed and convex and if A € K, then tA € K for all
t>0. If AeK and -A € K, then (Axx) = 0 for all x, and equation
(1.6) implies that ||A]| = 0. Thus K is a cone. If 0 < A < B, then

0 < (Ax,x) < (Bx,x)

for all x, so
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Al = sup{(Ax,x):x ¢ H and |[x|| = 1}

<sup {(Bxx):xx € H and |[x|| = 1} = |BJ|.

The latter inequality proves K is normal. -
If K is now a general cone in a Banach space X and x and y are
elements of K-{0}, say that x and y are "comparable" if there exist real

numbers a« > 0 and B > 0 such that
ax <y < fx. (L.7)

We say that two elements x and y of K-{0} are "equivalent" if they are
comparable, this defines an equivalence relation on K-{0} and divides K-{0} into
disjoint subsets which we shall call "components of K". Two elements of K-{0}

are equivalent if and only if they lie in the same component. If u € K-{0} and

C, = {x € K-{0}:x is comparable to u}, (1.8)

then C  is the component containing u; and one easily checks that C U {0}

satisfies all conditions to be a cone except that C U {0} need not be closed. If

(o] (o] (o]

K, the interior of K, is nonempty and u € K, then Cu = K.

If x and y are comparable, we define (following notation in [18]) numbers

m(y/x) and M(y/x) by

m(y/x) = sup{a@ > 0:ax < y} and (1.9)

M(y/x) = inf{8 > 0:y < px}. (1.10)

If x and y are comparable and & = m(y/x) and [ = M(y/x), define

d(x,y), Hilbert's projective metric, by



