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Above, the same theorem is stated in terms of logic, set theory, and
an abstract mathematical system called Boolean algebra. In logic
the theorem is proved By means of a truth table. In set theory it is

illustrated by Venn diagrams and in Boolean algebra by circuit
xii diagrams.
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Statements and Sets

in Mathematics

One way to view mathematics is to think of it as a study of patterns.
In this book, you will learn to work with a wide variety of patterns,
some familiar to you, such as x? — y* = (x + y)(x — »), and
others quite new. In order to learn the mathematics you will en-
counter, you will need to understand the logical machinery used to
discuss mathematical statements; this is what you will study in the
Dpresent chapter.

SIMPLE STATEMENTS AND SETS

1-1 Logical Statements; Sets

In studying algebra and geometry you have discovered many logical con-
nections between mathematical statements. But do you know what con-
stitutes a statement in logic?

A statement or proposition is a set of symbols (and words are symbols, of
course) which forms a meaningful assertion that is either true or false, but
not both true and false.

The following assertions are examples of statements:

True Statements False Statements
1)2+3=25. (Ho>1.
(2) Shakespeare wrote Hamlet. (2) Plato was a Chinese philosopher.
(3) Ottawa is not a province of (3) /125 # 5.

Canada.

On the other hand, none of the following sentences is a statement because
none can be said to be definitely true or definitely false.

(1) Give me liberty or give me death.
Q@ x2+1=5."
(3) This sentence is false.



2 CHAPTER ONE

Logical statements in mathematics frequently involve the use of symbols of
equality and inequality. You should recall that the symbol “="" represents
the word “‘equals” or the phrase “is equal to,” and is used between expres-
sions to show that they represent the same object. Similarly, the inequality
symbols “>,” “<,” “>,” and “<” represent “is greater than,” “is less
than,” “is greater than or equal to,” and “is less than or equal to,” respec-
tively. These symbols are used in sentences and statements comparing num- -
bers. A bar, / or |, is used in conjunction with certain symbols to denote
negation. For example, the symbol “#" placed between two expressions
asserts that the expressions do not represent the same object, and the symbol
<« stands for “is not less than.”

Some mathematical statements concern membership in a set. You should
recall from your earlier study of mathematics that the objects in a set are
called members or elements of the set, and are said to belong to or to be
contained in the set. The symbol € is used to denote ‘““is an element of,”
while € means “is not an element of.” For example, if J is the set of integers,
then 3 € J is a true statement, whereas 4 & J is a false statement.

A statement that two sets are equal is an assertion that they contain the
same elements. Thus, the statement 4 = B means that 4 and B name the
same set. This definition of the equality of sets implies that to specify a set,
you must be able to identify its elements. You can sometimes specify a set
by listing the names of its elements within braces, { }. For example,
{—1,0, 1}, read ‘“the set whose members are —1, 0, and 1,” is a roster (list)
of the numbers —1, 0, and 1. Quite frequently, however, a set has so many
elements that it is inconvenient or impossible to list them all. Thus, we may
write {1,2,3,...,50} and expect the reader to understand that the set
specified contains the integers from 1 to 50, inclusive. Similarly, {1,2,3,...}
specifies the set of all positive integers.

The members of a set can, themselves, be sets. {{1,3}, {5,7}, {9, 11} },
for example, is the set whose members are {1, 3}, {5,7}, and {9, 11}.
Observe that the set {{a, b}} is not the same as the set {a, b}. The first
contains just one element, {a, b}, while the second contains two elements,
a and b.

Another way to specify a set consists in giving a rule or condition that
enables you to decide whether or not any given object belongs to the set.
For example, {the teachers of
mathematics}, read ‘“the set of
the teachers of mathematics,”
specifies a set whose roster con-
tains many thousands of names.
Of course, you certainly recog-
nize that every mathematics
teacher you know belongs to

Teachers of Mathematics

Mathematics
teachers
you know

Figure 1-1
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{the teachers of mathematics}. Whenever each element of a set R is also an
element of a set S, we say that R is a subset of S, in symbols “R C S.”
Thus, {mathematics teachers you know} C {teachers of mathematics}.
Diagrams such as the one shown are used to illustrate a set and a subset;
they are called Venn diagrams.

Since every positive integer is a member of the set of positive integers, it is
certainly true that the set of positive integers is a subset of itself. Each set is
said to be the improper subset of itself; every other subset is called a proper
subset of the set.

Can you list the members of the set of integers between % and 2? This set
contains no elements at all and is therefore called the empty set or null set.
We use the symbol 0, written without braces, to designate the empty set.
Because of our agreement on the meaning of equality of sets, there is only
one empty set, §. Furthermore, @ is taken to be a proper subset of every
set except itself.

Exercises

Which of the sentences in Exercises 1-16 are statements? Of the statements,
which are true? Give a reason for each answer.

1. 5:4=20 6. (=2 > (=2
2. 5—4=2 7. 1+3#1+6
3. 3472 =2+ 15 8. 2+3>0

4. 714 +2)=7-44+17-2 9. Man the lifeboats!
5. 6—';;3 =6+ 1 10. Help!

In Exercises 11-16, let J = {integers} = {..., —3,—2,—1,0,1,2,3,...}.

1m. {,2,7yCJ 14. @ is not a subset of J.
12. 0&€J 15. —-1CJ
13. {0} eJ 16. {—1,0,2) &J

Copy each sentence, making it a true statement by replacing each question mark
with a numeral or with one of the symbols =, =, €, &€, C. (Note: There may
be more than one correct answer.)

10 X 4

7. =3 X ?7= -3 21. 75X 2
18. 27X 7=0 22. 21;"?;&7+1
19. 5(?—-3)=20 23. {0-2} C{,3 7%
24 — 6
20. 74 — 6 24. {1,§, -1} = {—-2+2,3,? X 4}
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o 25. {0, 2,4} ? {the even integers}
26. 5+ ? & {the positive and negative numbers}

8 f ’e ® 29. 07 {0} 3. {1, 2) ? (&, 1)

28. §?{7—7} 3. {#} 70 32. {1, {2} ? {{1},2}

27.

Let U = {—4,0, 8}. List all the subsets of U that

33. Have exactly one element. 35. Have at least two elements.
34. Have no elements. 36. Have no more than 2 elements.

Which of the following rosters or rules (Exercises 37-40) specify sets? Justify
your answer by explaining whether or not it can be decided that an arbitrary
object is or is not a member.

37. {the authors of this textbook}

38. {bell, book, candle}

39. {the digits appearing in the decimal numeral for 1}
40. {3,1,4,5,9,2,6,...}

G 41, Make a list of all subsets of {@, {f}}.
42, A set contains n > 0 elements. How many subsets does it have?

43. A set containing k + 1 elements has 8 more subsets than a set containing
k elements. Find k.

44, Argue thatif 4 C Band B C A4, then 4 = B.
45. Argue thatif A C Band B C C, then A C C.
46. Can an element of a set be a subset of the set? Justify your answer.

1—2’ Variables and Quantifiers

In logic and mathematics you encounter sentences, such as “He is an
elected official”” or “x + 1 > 0,” which cannot be described as true or as
false. To work with such sentences, you must understand the role of the
pronoun He and the letter x. Each is a symbol, called a variable, and is used
to represent any element of a specified set. The set whose elements may serve
as replacements for the variable is called the domain, or replacement set, or
universe of the variable. The members of the domain are called the values
of the variable. A variable with just one value is called a constant. If the
domain of the pronoun He in the sentence “He is an elected official” is
{the public officeholders in New York City}, you obtain a true statement
when you replace He by the name of the mayor, because in New York City
the mayor is elected. On the other hand, when you write the name of the
superintendent of schools in place of He, a false statement results, because



