SOLTVIDL Y
L ANGUAGE

PROGRAMMING

for the

BBC

MICROCOMPUT

AN Brnbaum

%

Assembly Language Programming
for the
BBC Microcomputer

Ian Birnbaum

© Ian Birnbaum 1982

All rights reserved. No part of this publication may be reproduced
or transmitted, in any form or by any means, without permission.

First edition 1982
Reprinted (with corrections) 1982, 1983 (twice)

Published by

THE MACMILLAN PRESS LTD.
London and Basingstoke
Companies and representatives
throughout the world

Printed in Great Britain by Unwin Brothers Limited,
The Gresham Press, Old Woking, Surrey.

ISBN 0 333 34585 1

Dedicated to Theresa

The paperback edition of this book is sold subject to the condition that it
shall not, by way of trade or otherwise, be lent, resold, hired out, or
otherwise circulated without the publisher’s prior consent in any form of
binding or cover other than that in which it is published and without a
similar condition including this condition being imposed on the
subsequent purchaser.

Assembly Language Programming
for the
BBC Microcomputer

Macmillan Computing Books

Advanced Graphics with the Sinclair ZX Spectrum
Ian O. Angell and Brian J. Jones

Advanced Graphics with the BBC Microcomputer
Ian O. Angell and Brian J. Jones

Assembly Language Programming for the BBC Microcomputer
Ian Birnbaum

Advanced Programming for the 16K ZX81 Mike Costello

Microprocessors and Microcomputers — their use and programming
Eric Huggins

The Alien, Numbereater, and Other Programs for Personal
Computers — with notes on how they were written John Race

Beginning BASIC Peter Gosling

Continuing BASIC Peter Gosling

Program Your Microcomputer in BASIC Peter Gosling

Practical BASIC Programming Peter Gosling

The Sinclair ZX81 — Programming for Real Applications Randle Hurley
More Real Applications for the Spectrum and ZX81 Randle Hurley
Assembly Language Assembled — for the Sinclair ZX81 Tony Woods
Digital Techniques Noel Morris

Microprocessor and Microcomputér Technology Noel Morris
Understanding Microprocessors B. S. Walker

Codes for Computers and Microprocessors P. Gosling and
Q. Laarhoven

280 Assembly Language Programming for Students Roger Hutty

Preface

Every BBC Microcomputer, whether Model A or Model B,'ccmes
equipped with an immensely powerful and very fast assembler. What
is more, assembly language statements and BASIC statements can be
freely mixed, hugely increasing the programmer's potential control
over the machine.

This book shows you how to establish that control. It assumes
that you are proficient in BASIC, for if you are not this is prob-
ably not the best time to learn assembly language. But it assumes
no knowledge of assembler at all, taking you step by step from the
basics to their complex implementation.

Since every user of the BBC Microcomputer assembler will have a
working knowledge of BASIC, it is possible to use that knowledge
to motivate and illustrate the ideas in assembly language. This
book takes that approach, and this should help you to master
assembly code, for you will always be acquainted with the funda-
mental concepts by seeing their connection with BASIC.

I had three types of readers in mind in writing this book.
Firstly all current owners of BBC Microcomputers who want to
extend their knowledge into machine code. To help them with self-
instruction, this book contains a considerable number of exercises
and a full solution is provided for every one. Secondly, the
teacher or student of Computer Science who wants to use this text
in a structured course. The book is the result of many years'
teaching experience, and it is designed according to a teaching
strategy which the author has found to be very successful.

And thirdly, those people, already experienced BASIC program-
mers, who are wondering whether to buy the BBC Microcomputer, when
there seems so much competition from cheaper and seemingly compar-
able computers. This book should help to convince them that the
BBC Micro is worth the extra expense. Quite apart from its superb
BASIC, the Micro possesses an assembler which turns it into a
potential 6502 development system in its own right! It also
possesses an operating system which is designed to mesh with
assembly language programming in an extraordinarily simple way.
One of the aims of this book is to show you how to exploit these
features to the full.

The book contains 73 listings of programs, many of which will
be found to be useful utilities in their own right, quite apart
from their value in teaching you assembly language. In particular

it contains a full machine code monitor, a suite of machine code
sorting programs which you can use on BASIC variables, a high
resolution screen copy to the Epson printer and a program compac-
tor. There are two companion tapes available with the book if you
do not feel you want to type in the programs yourself. Each tape
also contains two extra programs: the first, a universal graph
plotter and a 6502 disassembler which displays in standard 6502
mnemonics. The second contains two utilities for programming:

a machine code program which will find the locations of any segment
of code in a BASIC program (equivalent to the FIND command found
in some utility packages); and another machine code program which
will replace any segment of code in a BASIC program by any other
segment; so, for example, you can change any variable's name in
the whole program in an instant.

The book is completely self-contained: full information on the
6502 instruction set is provided throughout and summarised in an
Appendix. Other Appendices cover floating point and the user port,
and there is a section on combining programs in the BBC Computer
using PAGE and *LOAD.

Thanks are due to Mrs Barry who typed up a very untidy manu-
script quickly and efficiently, and with very few errors.

TIan Birnbaum
Needingworth
May 1982

Assembly Language Programming for the BBC Microcomputer

Two software cassettes are available to accompany this book.
They cost £9.00 each, if bought separately, or £16.00 for
both when ordered together.

TAPE 1

Contains all the listings in Chapters 2 to 9
Plus these two extra programs

GRAPHPLOT which draws up to two graphs in the highest
resolution available on your computer. (If you have
an Epson printer, you can also obtain a hard copy of
the graphs)

and
DISASSEMBLER which will translate any section of machine
code back into standard 6502 mnemonics. This program

is written entirely in BASIC, so it can be loaded into
any page.

Cassette 1 ISBN O 333 34587 8 £9.00 (inc. VAT)

TAPE 2

Contains all the listings in Chapter 10 and in the
Answer section
Plus these two extra programs

FINDCODE which will locate any section of code in
a program and display all the lines containing that
code

and
REPLACE which will locate any section of code and replace
it by any other

Cassette 2 ISBN 0 333 35016 2 £9.00 (inc. VAT)

These cassettes are available through all major bookshops .
but in case of difficulty order direct from

Globe Book Services
Canada Road
Byfleet

Surrey KT14 7JL

£9.00 each

or
£16.00 for the two

Contents

Page
Preface
Chapter 1 PreTiminary ideas 1
1.1 What is a computer? 1
1.2 How is memory organised in a computer? 2
1.3 How is the 6502 microprocessor organised? 6
1.4 Machine code and assembly language 8
1.5 Compilers and interpreters: Why use 9
assembly language?
Exercise 1 11
Chapter 2 Assignments 12
2.1 The accumulator 12
2.2 What is the assembly language equivalent of 12
LET NUMT = 177
2.3 More on the immediate, absolute and zero 14
page addressing modes
2.4 What is the assembler equivalent of 15
LET NUM2 = NUM1?
Exercise 2 16
2.5 Where to put machine code programs in the 17
BBC Computer
2.6 How to input assembly Tanguage programs 19

into the BBC Computer
2.7 Storing numbers larger than 256 in assembly 21

language
Chapter 3 Addition and subtraction 23
3.1 The arithmetic unit 23
3.2 What is the assembly language equivalent 24
of some simple BASIC statements involving
addition?
3.3 The importance of carry 25
Exercise 3.1 26
3.4 Adding numbers which are greater than 256: 26
Multiple precision arithmetic
Exercise 3.2 28
3.5 Subtraction 28

3.6 The function of the carry flag in subtraction: 30
Multiple precision subtraction

Exercise 3.3 31

3.7 Positive and negative numbers: signed 31
arithmetic

Exercise 3.4 34

3.8 Logical operations 34

Exercise 3.5 36

3.9 A new addressing mode: implied addressing 36

Chapter

Chapter

Chapter

Decision-making in assembly language

The processor status register

Decision-making using the microprocessor

The assembly language equivalents of some

BASIC conditional statements: I: Use of

the N and Z flags

Exercise 4.1

4.4 The assembly language equivalents of some

BASIC conditional statements: II: Use of
the CMP instruction

Exercise 4.2

4.5 Comparing numbers greater than 255

Exercise 4.3

4.6 Typing in assembly language programs with
labels into the BBC Computer

7 Relative addressing

8 Using branching in the addition and
subtraction of unsigned numbers:
INC and DEC

Exercise 4.4

4.9 Monitoring problems of sign using branching

Exercise 4.5

ArEAD
w R —

4.
4.

b Loop structure in assembly language
5.1 Loop structures
5.2 Index registers: some new instructions
5.3 The assembly language equivalent of a
FOR: s+ NEXT Toop
Exercise 5.1
5:4 FOR«:s:s NEXT loops of more than 256 cycles

Exercise 5.2

5.5 The equivalents of a REPEAT..... UNTIL and a
REPEATWHILE..... ENDWHILE Toop

5.6 Arithmetic and logical operations concerning
the X and Y registers

Exercise 5.3

5.7 Some example programs using loop structure

Exercise 5.4

6 Indexed addressing

6.1 Moving a section of memory

6.2 Improving the program

Exercise 6.1

6.3 The range of instructions for which indexed
addressing is available

6.4 Arrays

Exercise 6.2

6.5 A fundamental data structure: the queue

Exercise 6.3 ’

6.6 The assembler equivalent of PRINT

Exercise 6.4

6.7 The assembler equivalent of GET$, INKEYZ and
INPUTS

Page

37
37
38
39

43
43

Chapter

Chapter

Chapter

Exercise 6.5

6.8 Macros, conditional assembly and tables:
simplifying VDU statements

Exercise 6.6

7 Indirect indexed addressing

7.1 Moving a section of memory

7.2 A better method

Exercise 7.1

7.3 Inputting a series of strings of varying
lengths

7.4 Sorting a series of fixed length records

Exercise 7.2

7.5 Sorting a series of 32 bit signed integers

Exercise 7.3

7.6 Sorting a series of variable length strings

Exercise 7.4
7.7 Indirect jumps and jump tables
Exercise 7.5

8 Multiplication and division
A simple multiplying algorithm for decimal
numbers
2 A corresponding algorithm for binary numbers
3 Programming a 4-bit microprocessor to
perform the multiplication algorithm
A program to model the multiplication
algorithm
5 A more efficient algorithm for multiplication
6 More efficiency still: Accumulator addressing
e
7

._a

'S

xercise 8.1
An dinterlude: Outputting numbers using Binary
Coded Decimal

Exercise 8.2

8.8 A second interlude: A pseudo-random number
generator

8.9 A third interlude: Copying the high-resolution
screen to a printer

8.10 Division

Exercise 8.3

8.11 A second approach to division

Exercise 8.4

8.
8.
8.
8.
8.
8.
E
8.

9 The stack: Subroutines and interrupts

9.1 The concept of a stack

9.2 The stack and nested subroutines

9.3 Interrupts

9.4 Passing parameters to and from subroutines
9.5 Two important subroutines

Exercise 9.1

9.6 Further uses of the stack

Exercise 9.2

Page

95
95

98
99

102
105
105

107
110
110
113
113
117
117
119

120
120

120
121

124

125
127
128
128

131
131

133

139
141
142
144

145
145
147
150
155
159
167
167
169

9.7 Timing
Exercise 9.3

9.8 Screen scrolling: how it operates

Exercise 9.4

Chapter 10 Some utility programs

10.1 Introduction

10.2 Program 1: RETRIEVE
10.3 Program 2: INTSORT
10.4 Program 3: STRINGSORT
10.5 Program 4: REMSPACE
10.6 Program 5: MEMORYHUNT
10.7 Program 6: MC-MONITOR

Exercise 10

Answers to Exercises

Appendices

Appendix
Appendix
Appendix
Appendix
Appendi x

Appendix
Appendix
Appendi x
Appendix

W 00N g wn -

6502 Instruction Set

Full block diagram of 6502 architecture
Indexed indirect addressing

Floating point representation

Flowchart symbols and conventions used
in this book

Linking programs on the BBC Computer

The user port

Some important zero page locations
Operating system differences

Page

170
173
173
176

177
177
177
180
183
187
191
195
207

209

257
278
279
283
286

287
290

303
304

Chapter 1 Preliminary ideas

1.1 WHAT IS A COMPUTER?

In its simplest form, a computer can be considered in four
sections: input, output, microprocessor, internal memory.
Figure 1.1 shows the interrelationship:

[InputJ—*—{ MicroprocessorH Output |
| Memory (internal)

Figure 1.1: Simplified diagram of a computer

Most input is through the keyboard, but other input devices and
channels include: casette tape system, disc system and sensor
devices connected to an input port.

Most output is through the TV or monitor (the VDU), but other
output devices and channels include: casette tape system, disc
system, printer and control devices connected to an output port.

Notice that the cassette and disc systems are both input and
output devices. These are sometimes referred to as backing store.
Printers and suchlike are sometimes referred to as peripherals,
things outside the main system.

All input must pass through the microprocessor, at least at
some time or another. It may reside temporarily in some internal
memory (often referred to in this context as a buffer or latch),
but the microprocessor will deal with it when it can. Similarly
all output will be directed by the microprocessor and all will
pass through it. The microprocessor is the 'brain' of the system,
and this book is concerned with how to program it directly. There
are also other 'lesser brains' to be found in a computer, but
these are not usually under our control and correspond roughly,
following the metaphor, to the autonomic nervous system.

Internal memory can be divided into two parts: ROM (read only
memory) and RAM (misleadingly called random access memory - read/
write memory is a better name). ROM contains information which is
fixed: the microprocessor is unable to modify it. Usually it con-
tains instructions and data which the microprocessor will need in
the same form when a specific task is demanded. In particular, in
the BBC micro it contains the Operating System (0S) and the BASIC
Interpreter. A considerable advantage of ROM is that information
in it does not disappear when the computer is switched off.

Information in RAM will, by contrast, disappear if power is
removed. It has the advantage, however, of allowing information to
be modified. It is in RAM that all the programs and data we input
will reside.

Some RAM is given a special function. Some, for example, will
be used by the microprocessor as a sort of 'scratch pad' (this is
called the stack and is covered in Chapter 9). Other parts are
reserved for the 0S or the BASIC Interpreter in which to store
results and information. And some parts are connected to input/
output channels. RAM used in this way is often referred to as
memory mapped. For example, the BBC micro has a memory-mapped VDU,
each character on the screen corresponding to a specific portion
of memory which is fixed for each graphics mode chosen (this is
not strictly true, as we shall see in Chapter 9).

There are some specialised chips in the computer that act as
RAM, though they are not usually referred to in this way. The best
example of these are the input/output chips, going under a variety
of names (PIO - programmable input/output, PIA - peripheral inter-
face adapter, VIA - versatile interface adapter). PIO is the most
descriptive: the chip consists of a series of memory locations in
which data passing in or out can be latched; certain locations
contain information on whether a particular channel is to be con-
ceived as input or output, and this information can be changed by
the microprocessor. Although these chips contain more than just
memory (for example some contain a timer, results of which are
available at a specific location), they are most conveniently
thought of as RAM because they are addressable, an idea to which
we now turn.

1.2 HOW IS MEMORY ORGANISED IN A COMPUTER?

If we want to refer to a specific location of memory, it will
need to have a name. Since we may want to refer to any part of
memory at some time, we must make sure that memory is organised in
such a way that every location has a name and that this name is
unique.

When computers are built they are wired up in such a way that
the microprocessor can refer to a specific location’ by outputting
a series of pulses called an address. The set of wires through
which they pass is called the address bus.

Since each wire will either have a pulse or not have a pulse

2

there are two states which we may label 1 (pulse) and 0 (no pulse).
A microprocessor is a digital device because it always understands
things and communicates with other parts of the computer in this
two-state way. Thus: a switch is either on or off; an element
either has a positive or negative field etc.

The microprocessor in the BBC micro can accept 16 wires on its
address bus. Since each wire can either be 1 or 0 this gives a
total of 216 = 65536 addresses, that is from 0000000000000000 to

1111111111111111. Hence there can be at most 65536 locations of
memory.

Now writing 16 ones and/or zeros like this is very hard to read,
and so we will adopt a notation that makes it easier. We will
divide our 16 digits into four groups of four. So for example in
0111101101000010 the four groups are:

0111 1011 0100 0010

Now each group of four can have one of sixteen different forms,
from 0000 to 1111 (2%). We can use the numerals 0 to 9 for the
first ten; after that we will use A, B, C, D, E, F. Table 1.1
gives the details. In that table we can conceive of the four
digits on the left as the display on a rather odd car odometer
(the meter measuring the distance covered). Each cog on the dial
has just two numerals, 0 and 1. As the cog revolves through one
revolution it pushes the next one on half a turn. In this way,

the first sixteen numbers (0-15, decimal) are generated in the
order shown.

Table 1.1: Relationship between binary and hexadecimal

Binary Hexadecimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 Cc
1101 D
1110 E
1M1 F

Using this notation we can write the number above as 7B42. The
number 0010010101000000 will be written 2540, but this is rather
misleading because it looks like two thousand five hundred and
forty, which it isn't. So to prevent confusion, we precede these
hexadecimal numbers, as they are called, by the ampersand sign
(&). Thus we write them as &7B42 and &2540 (some computers use
the dollar sign, $, but not the BBC micro).

You will notice in Table 1.1 the terms binary and hexadecimal.
Binary means two (there are two possible numerals, 0 and 1) and
hexadecimal means sixteen (there are sixteen possible numerals
0 to F). In the same way decimal, our usual system of represent-
ing numbers, means ten (numerals 0 to 9).

Many books spend ages explaining how to convert from one system
to another, but this is a complete waste of time. Your BBC com-
puter will do it for you.

For example, type into your computer

P. &7B42

and see what you get. This is the decimal equivalent of &7B42.
Similarly, type in

P. ~14321

and see what you get. This is the hexadecimal equivalent of 14321.

If you wish you can write a program to convert either way but
it is hardly worth it; you might as well operate in direct mode,
as above. It is worth experimenting a little with various numbers
to see the equivalence operating for yourself.

It should be clear to you by now why it is convenient for the
computer to work in binary and why it is convenient for us to work
in hex (the usual abbreviation for hexadecimal). From now on we
will think of all the memory locations in terms of hex.

Now in order to make the wiring as simple as possible, a simpli-
fying concept called pageing is used. The 65536 addresses of
memory are conceived as a series of pages. The page number is
given by the top two digits of the hexadecimal number; the bottom
two digits give the location in that page. The best image is that
of a book with 256 pages, each page having 256 lines, each line
being a memory location. Rather eccentrically, the book's first
page is labelled zero, and is called zero page. It is a very
important area of memory as we shall see in the next chapter.
Figure 1.2 should make the idea clear. Thus address &F1B2 refers
to location 178 in page 241; that is, address number 61866. We can
think of this in the following way: the high byte &F1 accesses all

4

the locations in page 241; then the low byte &B2 picks out a
particular location in that page, location 178. The top half of
the address bus is thus wired up to access pages, and the lower
half to access one of 256 locations in any page.

location zero &0000
location one £&0001
1 I
Page zero : |
(&00xx) ; i
! I
! 1
location 255 &O00FF
location zero | &0100
location one &0101
{ |
Page one X .
(&01xx) ; |
1 1
' |
location 255 &01FF
1
1
1
|
|
1
1
|
|
'
|
!
1
1
|
|
1
|
|
1
1
|
|
|
location zero | &FF00
locationone | &FFO1
Page 255

I
|
(&FFxx) |
{}
1

location 255 &FFFF

Figure 1.2: Pageing

When referring to memory en masse it is conventional to work in
units of 4 pages and refer to this as a K of memory locations.
Thus the microprocessor in the BBC micro can address 64K of memory
locations; your machine will either have 16K of RAM (model A) or
32K of RAM (model B).

