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Introduction to the First Edition

These Notes aim at providing an introduction to the theory of linear algebraic
groups over fields. Their main objectives are to give some basic material over

arbitrary fields (Chap. I, II), and to discuss the structure of solvable and of *

reductive groups over algebraically closed fields (Chap. III, IV). To complete

the picture, they also include some rationality properties (§§15, 18) and some

results on groups over finite fields (§16) and over fields of characteristic
zero (§7).

Apart from some knowledge of Lie algebras, the main prerequisite for these
Notes is some familiarity with algebraic geometry. In fact, comparatively little
is actually needed. Most of the notions and results frequently used in the Notes
are summarized, a few with proofs, in a preliminary Chapter AG. As a basic
reference, we take Mumford’s Notes [14], and have tried to be to some extent
self-contained from there. A few further results from algebraic geometry
needed on some specific occasions will be recalled (with references) where used.
The point of view adopted here is essentially the set theoretic one: varieties are
1dentified with their set of points over an algebraic closure of the groundfield
(endowed with the Zariski-topology), however with some traces of the scheme
point of view here and there.

These Notes are based on a course given at Columbia University in Spring,
1968,* at the suggestion of Hyman Bass. Except for Chap. V, added later,
Notes were written up by H. Bass, with some help from Michael Stein, and are
reproduced here with few changes or additions. He did this with marvelous
efficiency, often expanding or improving the oral presentation. In particular,
the emphasis on dual numbers in §3 in his, and he wrote up Chapter AG, of
which only a very brief survey had been given in the course. It is a pleasure to
thank him most warmly for his contributions, without which these Notes
would hardly have come into being at this time. I would also like to thank Miss
P. Murray for her careful and fast typing of the manuscript, and J.E.
Humphreys, J.S. Joel for their help in checking and proofreading it.

- A. Borel
Princeton, February, 1969

*Lectures from May 7th on qualified as liberated class, under the sponsorship of the Students
Strike Committee. Space was generously made available on one occasion by the Union
Theological Seminary.



Introduction to the Second Edition

This is a revised and enlarged edition of the set of Notes: “Linear aigebraic
groups” published by Benjamin in 1969. The added material pertains mainly
to rationality questions over arbitrary fieids with, as a main goal, properties of
the rational points of isotropic reductive groups. Besides, a number of
corrections, additions and changes to the original text have been made In
particular:

§3 on Lie algebras has been revised. <

§6 on quotient spaces contains 2 bricf discussion of categorical quotients.
The existence of a quotient by finite groups has been added to §6, that of a
categorical quotient under the action of a torus to §8.

In §11, the original proof of Chevalley’s normalizer theorem has been
replaced by an argument I found in 1973, (and is used in the books of
Humphreys and Springer).

In §14, some material on parabolic subgroups has been added.

§15, on split solvable groups now contains a proof of the existence of a
rational point on any homogeneous space of a split solvable group, a theorem

~of Rosenlicht’s proved in the first edition only for GL, and G,.

§§19 to 24 are new. The first one shows that in a connected solvable k-group,
all Cartan k-subgroups are conjugate under G(k), a result also due to M.
Rosenlicht. §§20, 21 are devoted to the so-called reiative theory for isotropic
reductive groups over a field k: Conjugacy theorems for minimal parabolic k-
subgroups, maximal k-split tori, existence of a Tits system on G(k), rationality
of the quotient of G by a parabolic k-subgroup and description of the closure of
a Bruhat cell. As a necessary complement, §22 discusses central isogenies.

§23is devoted to examples and describes the Tits systems of many classical
groups. Finally, §24 surveys without proofs some main results on classific-
ations and linear representations of semi-simple groups and, assuming Lie
theory, relates the Tits system on the real points of a reductive group to the
similar notions introduced much earlier by E. Cartan in a Lie theoretic
framework. :

Many corrections have been made to the text of the first edition and
my thanks are due to J. Humphreys, F.D. Veldkamp, A.E. Zalesski and
V. Platonov who pointed out most of them.



viii Introduction to the Second Edition

I am also grateful to Mutsumi Saito, T. Watanabe and especially G. Prasad,
who read a draft of the changes and additions and found an embarrassing
number of misprints and minor inaccuracies, I am also glad to acknowledge
help received in the proofreading from H.P. Kraft, who read parts of the proofs
with great care and came up with a depressing list of corrections, and from
D. Jabon.

The first edition has been out of print for many years and the question of a
reedition has been in the air for that much time. After Addison-Wesley had
acquired the rights to the Benjamin publications they decided not to proceed
with one and released the publication rights to me. I am grateful to Springer-
Verlag to have offered over ten years ago to publish a reedition in which-
ever form I would want it and to several technical editors (starting with
W. Kaufmann-—Biihler) and scientific editors for having periodically prodded
me into getting on with this project. I am solely to blame for the
procrastination.

In preparing the typescript for the second edition, use was made to the
extent possible of copies of the first one, whose typography was quite different
from the one present techniques allow one to produce. The insertions of
corrections, changes and additions, which came in successive ways, presented
serious problems in harmonization, pasting and cutting. I am grateful to Irene
Gaskill and Elly Gustafsson for having performed them with great skill.

I would also like to express my appreciation to Springer-Verlag for their
handling of the publication and their patience in taking care of my desiderata.

A. Borel



Conventions and Notation

1. Throughout these Notes, k denotes a commutative field, K an
algebraically closed extension of k, k, (resp. k) the separable (resp. algebraic)
closure of k in K, and p is the characteristic of k. Sometimes, p also stands for
the chracteristic exponent of k i.e. for one if char(k) 0, and p if char(k) =
p>0.

All rings are commutative, unless the contrary is spec1ﬁcally allowed, with
unit, and all ring homomorphisms and modules are unitary.

If 4 is a'ring, A* is the group of invertible elemeénts of A.

Z denotes the ring of integers, @ (resp. R, resp. ) the field of rational (resp.
real, resp. complex) numbers.

2. References. A reference to section {x.y) of Chapter AG is denoted by
(AG.x.y). In the subsequent chapters (x.y) refers to section (x.y) in one of them.

There are two bibliographies, one for Chapter AG, on p. 83, one for
Chapters I to V, on p. 391.

References to original literature in Chapters I and V are usually collected in
bibliographical notes at the end of certain paragraphs. However, they do not
aim at completeness, and a result for which none is given need not be new.

3. Let G bea group. If (X)) (1 £i < m)are sets and f;:X; — G maps, then the
map
fi X %x...xX,—G defined by

(X152 -5 %) _’fl(xl) ----- o SonlXm)s (x;eXslsism)

is often called the product map of the f;’s.

Let N; (1 £i £ n) be normal subgroups of G. The group G is an almost direct
product of the N;s if the product map of the inclusions N;—»G is a
homomorphism of the direct product N, x ... x N,, onto G, with finite kernel.

If M, N are subgroups of G, then (M, N) denotes the subgroup of G
generated by the commutators (x, )= x.y.x "Ly~ ! (xeM, yeN).

.4, If V is a k-variety, and k' an extension of k in K, then V(k') denotes the set
of points of ¥ rational over k'. k'[V] is the k’-algebra of regular functions
' defined over k' on V, and k'(V) the k’-algebra of rational functions defined over

k' on V. If W is a k-variety, and f:V— W a k-morphism, then the map
" k[W1—k[V] defined by ¢ —@of is the comorphism associated to f and is

denoted f°.

E 28
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Chapter AG

Background Material from
Algebraic Geometry

i

This chapter should be used only as a reference for the remaining ones. Its
purpose is to establish the language and conventions of algebraic geometry
used in these notes. The intention is to take, in so far as is practicable, the
point of view of Mumford’s chapter I. Thus our varieties are identified with
their points over a fixed algebraically closed field K (of any characteristic).
It is technically important for us, however, not to require (as does Mumford)
that varieties be irreducible..

For the most part definitions and theorems are simply stated with
references and occasional indications of proofs. There are two notable
exceptions. We have given essentially complete treatments of the materiai
presented on rationality questions (i.e. field of definition), in sections 11-14,
and of the material on tangent spaces, in sections 15-16. This seemed desirable
because of the lack of convenient references for these results (in the form

-used here), and because of the important technical role both of these topics
play in the notes.

§1. Some Topological Notions
(Ct. [Class., exp. 1, no. 1].)

1.1 Irreducible components. A topological space X is said to be irreducible
if it is not empty and is not the union of two proper closed subsets. The
latter condition is equivalent to the requirement that each non-empty open
set be dense in X, or that each one be connected.

If Yis a subspace of a topological space X then is irreducible if and only
if its closure Y is irreducible. By Zorn’s lemma every irreducible subspace
of X is contained in a maximal one, and the preceding remark shows that
the maximal irreducible subspaces are closed. They are called the irreducible
components of X. Since the closure of a point is irreducible it lies in an
irreducible component; hence X is the union of its irreducible components.

Ifa subspace Y of X has only finitely many irreducible components, say
Yi,..., Y, then Y,,..., Y, are the irreducible components (without repetition)
of Y.
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1.2 Noeiherian spaces. A topological space X is said to be quasi-compact
{“quasi-” because X is not assumed to be Hausdorfl) if every open cover -
has a finite subcover. If every open set in X is quasi-compact, or,
equivalently, if the open sets satisfy the maximum condition, then X is said
to be noetherian. It is easily seen that every subspace of a noetherian space
is noetherian. ' ' ;

Proposition. Let X be a noetherian space.

(@) X has only finitely many irreducible components, say X,...,X,.
() An open set U in X is dense if and only if Un X, # (1 <i<n).
(c) For each i, X;=X;— ) (X;nX) is open in X, and U,=\) X is an
: j#i : i
open dense set in X whose irreducible and connected components are
XN s - :
Part (a) follows from a standard “noetherian induction” argument.

Since X; is irreducible the set X=X — < X j> is open(in X and dense

y JjFEL
in X,. Hence every open dense set U in X must meet X;. Conversely if U is
open and meets each X, then U X is dense in X;,'so U contains each X;
and hence equals X. It follows, in particular, that U, = |J X is open,

dense. Since the X are open, irreducible, and pairwise disjoint, they are
the irreducible and connected components of U,

1.3 Constructible sets. A subset Y of a topological space X is said to be
locally closed in X if Y is open in Y, or, equivalently, if Y is the intersection
of an open set with a closed set. The latter description makes it clear that the
intersection of two locally closed sets is locally closed. A constructible set is
a finite union of locally closed sets. The complement of a locally closed set
'is the union of an open set with a closed set, hence a constructible set. It
follows that the complement of a constructible set is constructible. Thus, the
constructible sets are a Boolean algebra (i.c. they are stable under finite
unions and intersections and under complementation) In fact they are the
Boolean algebra generated by the open and (or) closed sets.

If f:X->X'is a continuous map then f ~! is a Boolean algebra
homomorphism carrying open and closed sets, respectively, in X’ to those
in X. Hence f ~! carries locally closed and constructible sets, respectively in
X' to those in X. '

: Proposition. Let X be a noetherian space, and let Y be a constructible subset
of X. Then Y contains an open dense subset of Y.

Remark. Conversely, by a noetherian induction argument one can show that
if Y is a subset of X whose intersection with every irreducible closed subset
of X has the above property, then Y is constructible. :
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Proof. Write Y = ) L; with each L; locally closed. Then ¥ ={ J L, so, if ¥

is irreducible, Y = L, for some i. Moreover L(c<cY)is openin L,
In the general case write Y =| ) Y; where the Y; are the irreducible

J
components of Y. The latter are closed in Y and hence constructible in X.
Moreover the first case shows that ¥; contains a dense open set in Y Since
the Y are the irreducible components of ¥ (see (AGl 1)) it follows from
(AG.1. 2) that ¥ = u ¥; contains a dense open set in ¥

1.4 (Combinatorial) dimension. For a topologxcal space X it is the supremum
of the lengths, n, of chains F,c F;c---cF, of distinct irreducible closed
sets in X it is denoted

v : dim X.
If xeX we write

cdim X

for the infimum of dim U where U varies over open neighborhoods of x.
It follows easily from the definitions and the properties of irreducible closed
sets that dim ¢ = — oo, that

dim X =supdim_ X,
xeX
and that x+—dim, X is an upper semi-continuous function. Moreover, if X
has a finite number of irreducible components (e.g. if X is noetherian), say
Xi,..., X then dim X is the maximum of dim X, (1 i < m).

§2. Some Facts from Field Theory

2.1 Base change for fields (cf. [C.-C., exp. 13-14]). We fix a field extension
F of k. If I/ is any field extension of k we shall write

ka=k’®F.
k

This is a k'-algebra, but it is no longer a field, or even an integral domain,
in general. However, each of its prime ideals is minimal (i.e. there are no
~ iriclusion relations between them) and their intersection is the ideal of
“nilpotent elements in F, (see (AG.3:3) below). We say a ring is reduced if its
ideal of nilpotent elements is zero.
Here are the basic possibilities:
(@) k' is separable algebraic over k; Then F is reduccd but it may have
more than one prime ideal. :
- (b) K" is algebraic and purely inseparable over k: Then F,. has a- umquc
prime ideal (con51stxng of nilpotent elements) but F,. need not be-reduced.
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(c) k' is a purely transcendental extension of k: Then F . is clearly an integral
domain.

2.2 Separable extensions. F is said to be separable over k if it satisfies the
following conditions, which are equivalent: We write p for the characteristic
exponent of k (=1 if char(k) = 0).

(1) F? and k are linearly disjoint over k.
(2) Fyur)is reduced.
(3) F,. is reduced for all field extensions k' of k.

Suppose, for some extension L of k, that Fy is an integral domain, with
field of fractions (F,). Then F is separable over k<>(F) is separable over L.
The implication = follows essentially from the associativity of tensor
products, using criterion (3). To prove the converse we embed a given
extension k' of k in a bigger one, k", containing L also. Since Fy. = Fy. it
suffices to show that F,. is reduced. But Fy. = F L&) k" < (Fp), and the latter
is reduced, by hypothesis. 2

2.3 Differential criteria. (See [N.B., (a), §91, (78 Vv L Ch IE§T], or [C-C,
exp. 13].) A k-derivation D:F - F is a k-linear map such that

D(ab) = D{a)b + aD(b) for all a,beF.
The set of them,
‘Der, (£, F)
is a vector space over F.

Theorem. Suppose F is a finitely generated extension of k. Put

n = trdeg (F)
and
m = dim; Der, (F, F).

Then m = n, with equality if and only if F is separable over k.

Let D,,...,D,, be a basis of Deri(F,F) and let ay,...,a,€F. Then F is
separable algebraic over k(@y,. .., if and only if det(Da;)) #0.

Ifm = n then a set {a;,...,a,} as above is called a separating transcendence
basis.

2.4 Proposition. Let G be a group of automorphisms of a field F. Then F is
a separable extension of k= FS, the fixed elements under G.

We shall prove that F and k' are linearly disjoint over k, ie. that if
ay,...,a,ek!’? are linearly independent over k then they are linearly
independent over F. The action of G extends uniquely to F*? and G acts
trivially on k'/”. Suppose dy,...,a, are linearly dependent over F, but not
over ki we.can assume n is minimal. Let a;+ bya, + - +b,a,=0 be a
dependence relation: If some b;, say b,, is not-in k then it is moved by some
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geG. Subtracting a, + g(b,)a, + --- +g(b,)a, from the relation above we
“obtain a shorter relation; contradiction.

2.5 On occasions, we shall need a generalization of 2.4. Let A be a reduced
noetherian algebra over k, denote by k(A) its ring of fractions (cf. 3.1, Ex. 1)
and let G be a group of automorphisms of A. The action then extends to k(A).

By Prop. 10 in [N.B.(b):IV, §2, no. 5], k(4) is uniquely a sum of fields K; then
necessarily permuted by G. Let ¢; be the corresponding idempotents. Thus
1=>¢; and the ¢;’s are permuted by G. If ae A is non-divisor of zero in.
AS, then it is one in A. In fact we can write 1 =Y f; where f; is the sum of
idempotents e; forming an orbit of G; then we have f;-a #0 and therefore
since g(e; o) = g(e) a, e # 0 for all i’s. Therefore k(A) embeds in k(A)°.

Proposition. We keep the previous notation. Then e, k(A)® = K{, where G, is
the isotropy group of e;. If k(A)® = k(A®), then K, is a separable extension of
e;k(AC).

If ack(A)¢ then e; o is fixed under G,. Conversely, if beK; is fixed under
G,, then the sum of the g(b), where g runs through a set of representatives
of G/G,, is an element of k(4)® whose image under e, is b. Then 2.4 shows
that K, is a separable extension of e;-k(A4)¢. The second assertion is then
obvious.

§3. Some Commutative Algebra

3.1 Localization [N.B., (b)]. Let S be a multiplicative set in a ring 4, i.e. S
is not empty and s, teS=>steS. Then we have the “localization” AFS=4]
consisting of fractions a/s (a€ 4, s€S), and the natural map A — A[S™ 17 which
is universal among homomorphisms from A rendering the elements of §
invertible.

If M is an A-module we further have the localized A[S ™ ']-module M[S™'],
consisting of fractions x/s(xeM, seS), which is naturally isomorphic to

A[STIQM.
A

If xeM and seS then x/s=0 in M[S™'] if and only if tx =0 for some
teS. It follows directly from this that, if M is finitely generated M[S™']=0
if and only if tM =0 for some teS, ie. if and only if Snann M # ¢, where
ann M is the annihilator of M in A.

The functor M M[S '] from A-modules to A[S™']-modules is exact,
and it preserves tensors and Hom’s in the following sense: If M and N are

A-modules then the natural map <M XN )[S' e MLS 3L ® N[S™1]
A A[S

is an isomorphism, and the natural map Hom ,(M,N)[S~ 1]—»Hom AIS- 1)

(M[S™'],N[S™']) is an isomorphism if M is finitely presented.
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" Examples. (1) Let S be the set of all non-divisors of zero in A. Then
A— A[S™'] is injective, and the latter is called the full ring of fractions of
A. When A is an integral domain it is the field of fractions.

(2) If S = {/"|n = 0} for some fe4 then we write A, or A[1/f], and M,
for the localizations.

(3) An ideal P in A is prime if Sp=4A — P is a multiplicative set. The
corresponding localizations are denoted 4, and M. In this case 4, has a
unique maximal ideal, PA,, i.e. 4, is a local ring.

3.2 Local rings. Let A be a local ring with maximal ideal m and residue
class field k= A/m. Let M be a finitely generated A-module.

(@) f mM =M then M =0.

For let x4,...,x, be a minimal set of generators of M and suppose 7 > 0.
Wiite'x; = }: axfa;em). Then (1 —ay)x; = Y ax;. But 1 —a, is invertible,

i>1
SO X,,...,X, already generate M; contradiction.

(b) If x,,...,x,eM then they generate M if and only if they do so modulo
mM. Hence the minimal number of generators of M is dim,(M/mM).

This follows by applying (a) to M/N, where N is the submodule generated
B o oo :

(c) If M is projective then M is free.

We can write A" = M @ N, so that k" = (M/mM)® (N/mN). Lift a basis of
k" to A" so that it lies in M UN. The result is, by (b), a set of n generators
of A". These must clearly be a basis of A", e.g. because the associated matrix
has an invertible determinant. Hence M, being spanned by part of a basis
of A", is free.

3.3 Nil radical; reduced rings. The set of nilpotent elements in a ring A4 is
an ideal denoted nil A. We call 4 reduced if nil A = (0).

If J is any ideal the ideal /J is defined by ./J/J = nil(4/J). Thus nil
A = ./(G). Moreover, we have

ﬁ = the intersection of all primes céntaining J.

If S is a multiplicative set then \/J-A[S~1]=./J-A[S™"]. In particular
this implies that A is reduced if and only zf the full ring of fractions of A is
reduced.

3.4 spec(4) [M, Ch. 11, §1]. We let X = spec(A) be the set of all prime ideals
in A4, equipped with the Zariski topology, in which the closed sets are those
of the following form for some J < A:

V(J)={PeX|J < P}.
If YcX we put I(Y)- () P, and then V(I(Y)) is Just the closure of Y.

PeY
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Moreover, if J is an ideal of A4 it follows from 3.3 that

. V) =/I.
Thus closed sets correspond bijectively {with inclusions reversed) to ideals J

for which J= \/I . It follows that if A is noetherian then spec(4) is a
noetherian space. '

The map P {P} is a bijection from X to the set of irreducible closed sets .
in X. Thus the irreducible components of X correpond to the minimal primes
in A. Moreover the (combinatorial) dimension of X (measured by chains of
irreducible closed sets) is called the (Xrull) dimension of A, and it is denoted
dim 4. Thus

dim 4 = dim X.

If feA and PeX one sometimes writes f(P) for the image of f in the
residue class field of A, (which is the field of fractions of A4/P). With this
notation the complement of V([ A4) is

X, = {PeX|f(P)#0}.

This is called a principal open set. For any J we have V(J)= ﬂ V(f) so the
principal open sets are a base for the topology. chad

Suppose «,: A — B is a ring homomorphism. Then ¢, induces a continuous
mapoa:Y =spec(B) - X, oP) = «, *(P). In fact o~ 1 (V(J)) = V(o,(J)).

Examples. (1) If J is an ideal then A— A/J induces a homeomorphism of
spec(4/J) onto V(J)< X.

(2) If S is a multiplicative set then spec(A[S™'])—spec(4) induces a
. homeomorphism onto the set of PeX such that PnS = ¢.
" (i) If feA then we obtain a homeomorphism spec(A,;)— X .
(i) If PeX it follows that dim, X = dim spec(A4p) = (Krull)dim 4,.

3.5 Support of a module. Let X = spec(4) where A is a noetherian ring, and
let M be a finitely generated A-module. Then it follows from 3.1 that

supp(M) = {P|M, # 0}

is the closed set V(ann M). In particular M =0 if and only if supp(M) = ¢.

Let f:L— M be a homomorphism of A-modules. Since localization is exact
it follows that the set of P where f, is an epimorphism is the (open)
complement of supp(coker f). Applying this to Hom ,(M, L) — Hom ,(M, M),
and using the fact that the Hom’s localize properly (see 3.1) we conclude
that the set U of PeX such that fp is a split epimorphism is open, and f is
a split epimorphism if and only if U = X.

Suppose f is surjective and L is free. Then we deduce from the last remark
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and 3.2(c) that:
U ={PeX|M, is a free Ap-module}

is open, and M is a projective A-module if and only if U = X.

3.6 Integral extensions ([N.B., (b), Ch. 5] or [Z.-S., v. I, Ch. V]). Let Ac B
be rings. A beB is said to be integral over A if A[b] is a finitely generated
A-module, or, equivalently if b is a root of a monic polynomial with
coefficients in 4. The set B’ of all elements of B integral over A4 is a subring,
called the integral closure of A in B. We say B is integral over A if B' =

We say A is integrally closed in B if B'= A. We call 4 normal if Ais reduced
and integrally closed in its full ring of fractions.

Suppose A = B < C are rings. Then C is integral over A if and only if C
and B are integral over B and A, respectively.

Suppose B is integral over 4. Then spec(B)—spec(A4) is surjective and
closed. If B is a finitely generated A-algebra then B is a finitely generated
A-module. If B is an integral domain then every non-zero ideal of B has
non-zero intersection with A.

To see the latter let b" +a,_;b" ! + --- + a, = 0 be an integral equation of
minimal degree over 4 of some b #0in B. Thena, = — b(a,_,b" 2+ --- + a,)e
bBn A. Moreover a,#0; otherwise we could reduce the degree of the
equation.

3.7 Noether normalization [M, Ch. 1, p. 4]. A k-algebra A is said to be affine
if it is finitely generated as a k-algebra. Such an A is a noetherian ring.

Theorem. Let R =k[Yy,,..., V] be an affine integral domain over k whose field
of fractions, k(y1,...,Vm), has transcendence degree n over k. Then there exist
elements x,,...,x,eR, which are algebraically independent over k, and such
that R is integral over the polynomial ring k[x,...,x,). If k(yy,..., V) is
separable over k then x,,...,x, can be chosen tc be a separating transcendence
basis of k(yy,..., V. over k.

Except for the last assertion this theorem is essentially identical in statement
and notation with that in Mumford, page 4. With the following modification,
the proof in Mumford gives also the last assertion as well.

First, choose yi,...,y,, so that the last n of them are a separating
transcendence basis. Next, choose the integers ry,...,r, (as well as their
analogues at other stages of the induction) to be divisible by p, the
characteristic exponent of k. The proof in Mumford requires only that the
rs be large and increase rapidly, so our additional restriction is harmless.

This done, the x,,...,x, produced by the proof will be congruent, modulo
p™ powers, to the last n of the y’s. Thus each x; has the same image under
every k-derivation as the corresponding y (if p > 1; otherwise there is no
problem). It therefore follows that the x’s, like the y’s, are a separating
transcendence basis (see (AG.2.3)).
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3.8 The Nullstellensatz [M, Ch.I]. Let A be an affine K-algebra, and let
X = max(A) be the subspace of maximal ideals in spec(4).

If e:A—K is a K-algebra homomorphism then ker(e)e X so we have a
natural map

@:Mory (4, K)— X.

Theorem. (Nullstellensatz).

(1) ¢ is bijective.

(2) X is dense in spec(A). Moreover Fr—F N X is a bijection from the set of
closed sets in spec(A) to the set of closed sets in X. Therefore the analogous
statement is valid for open sets also.

If xeX we shall write e, for the homomorphism 4—K such that
x =ker(e,). If feA we shall also use the functional notation

f)=ex(f).

Thus each f € 4 determines a function X — K. If f represents the zero function

then fel(X)= () x. It follows from part (2) that I(x) = I(spec(A4)) = nil 4.
xeX

Thus, in general, the function on X associated with f determines f modulo

nil A. If A is reduced we can therefore view ‘4 as a ring of K-valued function

on X.

We shall use for X the same notational conventions introduced for spec(4).
For example, if feA then X, = {xeX|f(x)# 0}. These principal open sets
are a base for the topology on X.

If M is an A-module we also write suppy(M) = {xe X|M, # 0}, or simply
supp(M) when the meaning is clear. In view of part (2) of the Nullstellensatz
all the remarks of 3.5 remain valid with X in place of spec(A4).

The correspondence in (2) also matches irreducible closed sets, clearly, and
hence irreducible components. If xe X, then dim, X = dim, spec(4) = dim 4.
Moreover dim X = dim spec(4). -

39 Regular local rings [Z.-S., v. II, Ch. VIIL, §11]. Let 4 be a noetherian
local ring with maximal ideal m and residue class field k = 4/m. Then the
minimal number of generators of m is (see 3.2) the dimension over k of m/m?.
It is a basic fact that

dim, (nm/m?) = dim 4,

where dim A is defined as in 3.4. When this inequality is an equality the local
ring A is said to be regular.

Regularity has rather strong consequences for 4, for example the fact that
A is then a unique factorization domain.

We shall see in AG.17 that, when A is the local ring of a point x on a
variety V, then regularity of 4 means that x is a simple point; hence the
importance of the notion. A minimal set of generators of m then gives the



