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FOREWORD °

~ This translation follows the second edition of K.
Knopp’s Aufgabensammlung zur Funktionentheorie, 1. .
Teil, except for a few minor changes.

. The ‘problems of the first five chapters concern ma-
terial treated in the first volume of the same author’s
Theory of Functions (referred to as KI; the references
are to the translation by Bagemihl, Dover Publications,
Inc., 1945.) Familiarity with the first two chapters of .
C. Ca.rathéodory’s Conformal Representation (Cam-~
bridge University Press, 1982, referred to as C) is
sufficient for the understa.ndlng of the problems in
Chapter VI.

The solution of a problem often depends on that of
a previous one. Some problems are more difficult than
others, these are marked by asterisks. On many occa-
sions, the reader will find carefully executed skefches
helpful in the solution of problems. This applies partic-
ularly to the problems in Chapter VI .

The notations in this volume.are as follows: Complex

“numbers (and points) are denoted by 20,2, , - , Wy,
W, cra, b, complexva.riables byzs ¢ - w
w: .- . (In §13, however, 2, , 2; - - - denote variables. )

‘ Numbers con;ugate to z, a, - are denoted by 2, a

Rea.l constants are denoted by z, , 2, , ‘-‘- ., 1’/., y Uiy
oty Uyttt U 0Byt AT We write z =
z+ iy = r(008<p+-smv).x==m(z),y==3‘(z),
r=|z|rp=amz



viii ‘ " PORBWORD '

Posltwe constants are denoted by T, p S o€ -
- positive integers by m, n, p -
Regxons are denoted by capltal German letters: ®,

I, .- -, paths and curves by 1. c. German and capltal
roman letters é$p---,CL,- : . r

E




Part I—PROBLEMS

CBAPTER 1
FUNDAMENTAL CONCEPTS

14

§1. Numbers and Points
’ (K1, 1-2)

1. Given a complex number 2, > 0, find its reflection
with respect to a) the origin, b) the real axis, c) the
imaginary axis, d) the line z - y = 0, e) the line
z+y=0.

: 2l Show that (1/2')(|=v| + h/l) 2] < |z +
y .

3. Find the locl of points z satisfying the following
. relations: ‘

D (212 b [21>2 o RO
d)’, 0< R(ez) < 2x; e) RE) =¢(%B),
f) 3¢) = a(%o); g 12 —z{<1;¢

{22 —1|=a>0; i) ‘%|<s,s>0;



. z—1 z—1
: z2-a|
l) z+1 ’5¢!>O m) z — 2, -fl.

4. When are z, , %2 , 23 collinear? (Consider the differ-
ence quotient (2, — 23)/2y ~ %).)

5. Whendoz,,2:,2,2lieona cu'cle orons strmght

line? (Consider the cross-ratio (z; — z)/(2: — z,) <
(22 — 2/ (22 — 24).) ' '.

6. What is the geometrical meaning of the identity
lzi + 2+ —zaP =20z + 27 ‘

7. Find the point z dividing the segment 2, - - - 2 in
the l‘atlo AL A (Al + Aa # O) )

8. Find the mass center of the tnangle %%, %
when 8) each vertex z, carries the same mass A, b) the
vertices carry the masses A, , X3, As . ¢) Show that the
mass centér found in b) lies within the triangle if all
three masses are positive. -

9. The masses \; , Ay, - ° , N are situated at. z, ,

23, 0 . Show that the mass center of tbls gystem
‘is z = ()“z, + ngz + + Al:zb)/(xl + x2 + + Au)
10. Given that 2, + 2+ 2 =0,|2.| = |zl =

| 2] = 1, show that 2, , 2, , 2, are the vertices of an
equilateral triangle inscribed into the unit circle. -

11. Gwenthat.z, + 2,4+ 2z 2z =0 |2 =
|2,] = |#) = lz| = 1, show that 2, , 22, zs-, 2s
. are the vertices of a rectangle inscribed into bhe unit.
circle. - '

12. When are two triangles, z, , 2., 2; and z{ , 2} , 2
gimilar and gimilarly situated? (Cf. problém 4.)



POINT SETB. PATHB. REGIONS 3

*13. a) Given two pointsz, , 2z, |2 | <1,|2| < 1,
show that for every point z » 1 belongmg to the
triangle 2, , 2, ,1 -

J____1<K

l—lzl"

'where K K(z ,2)isa comstant dependmg on]y on
zandz,.

b) Determine the smallest value of K for z, =
(14 4)/2,2, = (1 — 3)/2.

§2. Point Sets. Paths. Regions
- (K1, 34)

1. Show that the set of Toots of algebraic equatlons
of the form

2.2 + a," l+~---+a;._1z+m = 0,

the a’s bemg Gaussian mtegers, is countable. (A set is
~ countable if its elements can be arranged in a sequence.
" A complex number z is called a Gaussian integer if
- R(2) and J(z) are real integers.)

2. Show that the set of all numbers z = = + iy, =
and y being rational numbers, is countable. :

3. Order the set of all numbers z = l/m + a/n (m,
n positive integers) into a seguence.

4. Find the greatest lower bound «, the lea.at upper
bound B, the lower limit A, and the upper limit u of
the following real sets. (Indicate whether or not a, ﬁ,

A, & belong to the set conmdered) . '
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a) The set of rational numbers p/¢ with even ¢ and

p'/¢ < 10. '

b) The set of numbers of the form (1 = 1/n)".

- ¢) The set of numbers of the form (1 == 1/x%)".

d) The set of nurbers of the form n + 1/2.

e) The set of numbers of the form » + 1/8.

. f) The set of numbers of the form 1/m + 1/n.

g) The set of numbers of the form (1/m + 1/n mn

h) The set of numbers of the form +1/m = 1/n.

i) The set of numbers of the form 1 + (-—1)" +

(—1)*/n.

k) The set of all numbers which may be written as

infinite decimal fractions of the form o0y -+, agodd.
(In b) to i) n and m denote arbitrary positive in-

tegers.) ,
*5. Show that each point of the set defined in 4k) is

a limit point of the set.
6. Show that « = \.whenever a does not belong to

‘the set' and 8 = u whenever 8 does not belong to the

set.
7. Is the set defined by the relation | z ( + R(z) £

1 bounded? What domain does it occupy?
8. Find all limit points of the following sets:

a) 1/m +i/n, m andn positive integers,

b) |z] < 1,

c) lz] > 1,

d) the set defined in problem 2,

e) the set of all non-real 2 in the domain int.e'ridr to the

umt circle.
"*9, Is the set defined in problem 4k) closed‘?
10. Is a limit point of a point set which docs not

belong to the set a boundary point of the set?



POINT SETS. PATHS. REGIONS . 5

11.. Show that a boundary point of .a- point set M
which belongs to M is a limit point of the comple-
mentary set M’. (M’ consists of all points which do not
belong to M.)

12. .Show that the set of all boundary pomts of a
point set M is-closed.

*13. Given two disjunct clased point sets M’ and M,
one of which, say M*, is bounded, show that there exlsts
a positive number d such that | 2 — 2" | > d whenever
2z’ belongs to M’ and z” to M”’. Show that among all -
such numbers d there exists a largest number d, .

14. Show that an arc of the continuous curve

|z sin (x/z), z#0
y= :
Ofor:c = 0 .

conta,lmng the origin is not rectifiable. :
15. Let 9 consist of all points of the upper hali-
plane [3(z) > 0] except those lying on the segments
z=s,z=xl/n+it,n=123 -.-,0<t <1,
- Is I a region? Find the boundary pomts of m. Is /2
a8 boundary point? Does there exist a path leading from .
= 2 + ¢ to ¢/2 and situated (except for the end-
pomt ¢/2) within IN?
16. Consider the spiral S defined by:

: 3(—“””, 0<isl,
z =zt = ,

Ofort = 0.

Is S a path leading from z, = z(1) to 2z, = 0? . -
*17. Let & be a plane region, @, its image under
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stereographic prbjection, M the set of boundary points
of &, . Show that @ is simply connected if and only
if M is connected. (A closed set is called connected if
it can not be divided into two closed sub-sets without
a common element.) "
18. Is the region defined in problem 15 simply con-
nected?
19, Show that a enmply connected region O on the
surface of a sphere which does not contain two points
of the sphere does not contain infinitely many pomts
of the sphere.



: ‘ CHAPTER IT ) .
INFINITE SEQUENCES AND SERIES

§3. Limits of Sequences Infinite Series with Constant
- Terms

-(KI, 2-3)
1. Let ¢ be a limit point of the sequence z, , 2, ,
N AR Show that the sequence contains a sub-

sequence 2| , 2§ , - - - 'which converges to g'.
2. Ifz,.—r;',then '

e o e i +zn

z:=_- Loon = §
Is this true if { = ©?
3. If z, — §, then
R /W ol 22 T ol ol 2
- " ptpat -+ 0.
aplzl+(Pﬁ—Pl)z?+"'.+(riﬂ-Pl“l)?'_’

QP.

.where o ,Ap., , + -+ is any sequence of positive numbers
such that P, = (py + p + +++ + ) = + .
" 4, If 2, — ¢, then ’

bz bt F o+ bz
A .bl+b2+"'+bn

- Bizl + (Bl — B‘l)‘zz + (B n—lkn
= . B,‘

7




8 INFINITE S8QUENCES AND SERIES

if b, , by, - -'- are complex numbers such that for all n the
numbersﬂ..-—(|b1+bz+ +b|)/(|b1|+‘bz|+
- =+ | ba|) exceed some fixed positive number 8, and
suchtha.t(lb,|+|b,|+ b)) >t
5. Let there be given inﬁmtely many numbers a,;
arranged in the form

@11

-----------------------

and satisfying the conditions: 1) for every fixed p,
a,, — 0, 2) there exists a positive constant M such

tha't Iaull + |.au'3| + e + Iamtl _<. Mfor all n.
* Show that if 2z, — 0, then

2 = anty + auz; + + GunZn — 0.

6. Assume that in addition to conditions 1) and 2) of
the preceding problem the numbers a,, also satisfy the -
condition 3) A, = a,, + @us + -+ + Gy, — 1. Show
that if z, — {, then . o

Zn = GmZy + GuaZa + 0+ Gz — ¢

Show that this theorem contains as special cases the
theorems stated in problems 2, 3, 4.
7. 8) 2z, —> ¢ and 2! — ol then

— z{z:' ; z£z£' + + zlzn - ;-Ig-ll
n




