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1 Introduction

In [K] Kodaira introduced the operation of logarithmic transform on elliptic surfaces.
He noticed that applying certain types of log transforms to an elliptic K'3 surface
produced new surfaces which were not K3 surfaces but were homotopy equivalent to
K3 surfaces. He then asked about their diffeomorphism? classification. In this paper
we shall completely answer this question — in fact, two such surfaces are diffeomorphic
if and only if they are deformation equivalent which means that their multiple fibers
have the same multiplicity.

This is part of a more general question about the relationship between the com-
plex geometry and the differential topology of algebraic surfaces. For example, one
can ask (cf. [D1, FM2]), “In general for complex surfaces, what is the relationship
of deformation type and diffeomorphism type?” Similarly, “For minimal non-rational
surfaces is the canonical class invariant up to sign under orientation-preserving dif-
feomorphisms?” What we do here completely answers these two questions for regular
elliptic surfaces of geometric genus one.

The base of the elliptic fibration of any regular elliptic surface is the projective
line. In the case when there are more than two multiple fibers the fundamental
group of the elliptic surface determines the number of multiple fibers as well as the
multiplicities of these multiple fibers. That is to say the fundamental group determines
the deformation type, see [FM1], for example. Thus, for the rest of this paper we shall
assume that the elliptic fibration has at most two multiple fibers. The fundamental
group of such a surface is a cyclic group of order equal to the gcd of the multiplicities
of the multiple fibers. (This means that the group is trivial if there is at most one
multiple fiber.) The main body of the paper is concerned with the case of simply
connected elliptic surfaces. In the appendix we extend the argument to the non-
simply connected case.

Let us restrict for a moment to minimal regular elliptic surfaces of geometric genus
one. Given any pair of positive integers, there is such an elliptic surface with base
the projective line with multiplicities given by this pair. (By convention we set one
or both of the multiplicities equal to one if there are respectively one or no multiple
fibers). As is well-known, e.g. [FM1], the equivalence classes of these elliptic surfaces
up to deformation type (as defined in [FM1]) are indexed by the multiplicities. Our
main result is that the multiplicities are diffeomorphism invariants. Thus, we have
as an immediate corollary that for these elliptic surfaces deformation type agrees
with diffeomorphism type. Our second main result is that a diffeomorphism between
minimal regular elliptic surfaces of geometric genus one preserves the canonical class
up to sign modulo torsion. From this fact one can deduce, by the arguments given in
[FM1], the analogues of these results hold for non minimal simply connected ellitpic
surfaces with p, = 1 as well. By way of contrast, notice that by Freedman’s Theorem
[Fre] there are only two homeomorphism types of such minimal elliptic surfaces —
those that are spin and those that are not.

!He actually asked about the topological classification, but in those days the distinction between
the two notions was not as clear as it is today.



2 1 INTRODUCTION

1.1 Statement of the main results

If S is any algebraic surface, we let ks € H%(S; Q) = ¢;(Ks) where K3 is the canonical
class of §. Let £ be the collection of minimal regular elliptic surfaces of geometric
genus one with at most two multiple fibers. To each S € £ we associate a pair of
positive integers (m(S), m2(S)) = (m1, m2), called the multiplicities of S, as follows.
If S has two multiple fibers Fj and F3, then m; and m; are their multiplicities with the
proviso that if one of the multiplicities is even then we take m; te be this multiplicity.
If S has only one multiple fiber, we set m; equal to the multiplicity of this fiber and
mg equal to 1. If S has no multiple fibers (so that it is a K 3-surface), then we set
both the m; equal to 1.
Let S be a surface in £. Let

Ks = Cl(F)/"llmZ € Hz(S’Q)

where F' is a fiber of the elliptic fibration. Notice that ged(m;, ms)ks is the image of
an indivisible integral cohomology class. According to [FM1] each Donaldson polyno-
mial 7.(S) of S is a polynomial in ks and the quadratic intersection form gs of the
surface. It follows from the diffeomorphism invariance of Donaldson polynomials up
to sign that the diffeomorphism type determines the coefficients up to sign. We shall
compute two of the coeflicients in this expansion for the invariant 43(S) as functions
of the multiplicities. An simple analysis of these functions shows that they determine
the multiplicities.

Our main result is the following partial evaluation of the Donaldson polynomial.

Theorem 1.1.1 Let S be a minimal elliptic surface over P! with at most two multiple
fibers and with p,(S) = 1. Let (mq,m3) be its multiplicities. Let v3(S) be the unstable
Donaldson polynomial as defined in Chapter 8 of [FM1]. It is a polynomial function
of degree 6 on Hy(S; Q). According to [FM1] there is an ezpansion

3
75(S) =Y ci(my, my)q5 ' k%

=0

-

where the c;(my, m3y) are rational numbers depending only on (mq,m;). In fact,
co(m1, mz) = 15mym, (1)

and
c1(my, my) = 15(m;m;3) (2(m1m2)2 —(m?+ mé)) . (2)

Suppose that ¢: S — S’ is a diffeomorphism between simply connected surfaces
in €. As is shown in [FM1] (Chapter 4) it follows that all the coefficients in the
expansions for 73(S) and 73(S5’) are equal up to sign, i.e., ¢;(m1, my) = tci(my, m})
for all . Furthermore, if ¢;(mq, m;) # 0 for some ¢ > 0, then p*kss = A\, ks for some
Ao € Q.

It is obvious that the unordered pair (mj,m;) is determined by Formulas (1)
and (2). Thus, we come to our main result about elliptic surfaces of geometric genus
one.
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Theorem 1.1.2 Let S, S’ be minimal elliptic surfaces over P! with at most two mul-
tiple fibers and with geometric genera equal to one. Then S and S’ are diffeomorphic
if and only if they are deformation equivalent in the sense of [FMI1], i.e., they are
diffeomorphic if and only if the multiplicities of S equal those of S’. Furthermore, if
p: S — S is a diffeomorphism then

QD'ICSI = :tks . (3)

Bauer, in [B1] also establishes this result in the simply connected case by proving
a theorem similar to Theorem 1.1.1.

As proved in [FM1] Theorem 1.1.2 implies a similar result for nonminimal elliptic
surfaces.

Theorem 1.1.3 Let S, S’ be possibly non-minimal regular elliptic surfaces with ge-
ometric genus equal to one. Let p:S — Syin and p': S" — Sl be the maps to the
minimal models. Then S and S’ are diffeomorphic if and only if they are deformation
equivalent, i.e., if and only if they have the same Euler characteristic (i.e. they are
blown up the same number of times) and the multiplicities of the multiple fibers of Smin
and Sy, are equal. If p:S — S’ is a diffeomorphism then @™ (p')*ks = +p ks,
Also, ©* maps (p')*H*(S!,,) isomorphically to p* H*(Smin)-

This paper is concerned with establishing Theorem 1.1.1. The main body of the
paper (Sections 1 through 6) establishes the necessary algebro-geometric description of
the relevant moduli spaces. Section 7 deals with combinatorics of the simply connected
case, i.e., the case when the multiplicities are relatively prime. In the appendix,
written jointly with Millie Niss, we treat the combinatorics in the case when the
multiplicities are not relatively prime.

1.2 Background

In the 1980’s Donaldson introduced a family of invariants for smooth four-manifolds,
see [D3]. These invariants are the only known invariants for four-manifolds which go
beyond homotopy or homeomorphism invariants. They are defined using a riemannian
metric and a moduli space of solutions to a non-linear elliptic PDE associated to the
metric (the anti-self-dual equations for connections on principal bundles). They are
homogeneous polynomials on the second homology of the manifold and are defined by
integrating cup products of 2-dimensional cohomology classes over the fundamental
class of a compactification of this moduli space.

Let us give more details on the definition of the invariants. General references for
the material below are [FU], [DK], [D3], and [FM1]. Fix a closed oriented riemannian
4-manifold (X, g). Assume for simplicity that 5,(X) = 0. For each integer ¢ > 0,
let P. - X be the unique (up to isomorphism) principal SU(2)-bundle over X with
c; = c¢. We denote by M(P.,g) the moduli space of gauge equivalence classes of
g-ASD connections on P.. If g is generic and b3 (X) > 0, then M(P,,g) is a smooth
manifold of dimension 2d(c) = 8¢ —3(b3(X)+1). There is a natural compactification,
the so-called Uhlenbeck compactification, M(P., g) of this moduli space. The points
of M(P,, g) parametrize generalized g-ASD connections, generalized in the sense that
they can have points of concentrated curvature. For g generic and c sufficiently large
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M(P.,g) has a fundamental class [M(P.,g)]. The condition on c that there be a
fundamental class is that the codimension of every stratum added at infinity be at
least two. For g generic all the strata have codimension at least 4, except possibly
the one parametrizing generalized connections with flat background connection (i.e.,
generalized connections all of whose curvature is concentrated at points). This stratum
has dimension 4c. Thus, we need 8¢ — 3(bf (M) +1) > 4c+2 or

c> (3bF (M) +5)/4 .

The c satisfying this condition are said to be in the stable range for X. All others are
said to be in the unstable range for X.
There is the Donaldson p-map

p: Hy(X) — H*(M(P.,q))

extending the slant product with minus one-quarter the first Pontrjagin class of the
universal SO(3)-bundle over X x M(P,,g). The Donaldson polynomial invariant is
defined by

Ye(X, 9)(en, - .. vad(t)) = (plar)U---U I‘(O‘d(c))a [ﬂ(Pc,g)])

for any classes a; € Hy(X). Clearly, this is a multilinear function on Hz(X) or equiva-
lently, a homogeneous polynomial in H?(X) of degree d(c). Provided that b3 (X) > 1
this polynomial does not depend on the metric g and therefore is an invariant of the
underlying smooth oriented manifold. We denote it by 7.(X). (Actually, here we
have not discussed orientations for the moduli space but there is a consistent way to
orient these involving one choice of sign. Hence, we have invariants of X defined up
to sign.) The polynomials v.(X) are called the Donaldson invariants. So far, we have
indicated how they are defined for ¢ in the stable range.

We can extend the discussion to the unstable range by using a blow up formula.
Let X' = X#P—?:, and suppose that c is in the stable range for X. (Notice that the
stable range for a manifold depends on b7 of the manifold, so that X and X’ have
the same stable range.) Then we have the gauge-theoretic blow up formula [FM1]

-1
T‘yCH(X')(e, e,e,e,0n,. .., 0q0c) = 7e(X)(aa,. .., aqe))

where e € Hz(ﬁé) is a generator and a; € Hy(X). Now suppose that ¢ + 1 is in the
stable range for X and X' but c is not. Then we can use the expression on the left-
hand-side of this equation to define 7.(X) (provided that we are willing to invert 2).
Blowing up more than one point and repeatedly using this device allows one to define
7.(X) for any ¢ > 0, enjoying the same formal properties as the stable invariants,
[FM1].

The Donaldson invariants are hard to compute directly from the definition. Most
computations to date have been done for algebraic surfaces using a correspondence
established by Donaldson in [D2] between anti-self-dual (ASD) connections and stable
holomorphic bundles in the case that the metric is Kéhler. (The (0, 1)-part of an anti-
self-dual connection is an integrable complex structure on the bundle and defines a
stable holomorphic structure. This gives the correspondence.) Let S be a smooth
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projective surface and H a polarization of S. Let gy be the Kahler metric associated
to the polarization H. Let M.(S, H) be the moduli space of rank-two H-slope stable
holomorphic vector bundles over S with trivial determinant and with ¢; = c¢. Let
P. be the SU(2)-bundle on S with ¢;(P.) = c¢. The Donaldson correspondence [D2]
proves that moduli space M(P,, gy) is naturally homeomorphic to M.(S, H).

As a consequence of these ideas Donaldson showed that these invariants are non-
zero for algebraic surfaces, [D3]. On the other hand, gauge-theoretic arguments [D3]
show that the invariants are zero for manifolds which are connected sums of manifolds
with 2-dimensional classes with positive self-intersection. A striking consequence of
these two results is that no algebraic surface can be decomposed as such a connected
sum. (This is not directly related to what we shall in this paper, but it does give an
indication of the power of the methods.)

Let us consider other results proved by of these techniques which are more di-
rectly related to this paper. The first is Donaldson’s result [D4] that there are two
homeomorphic but non-diffeomrophic simply connected elliptic surfaces with p, = 0,
thus showing that the smooth h-cobordism theorem does not extend to dimension
four. This result was generalized by [FM3] and [OV] to show that in fact there are in-
finitely many homeomorphic but pairwise non-diffeomorphic simply connected elliptic
surfaces with p, = 0. Making more explicit computations along the same lines, Bauer
[B2] showed the following. Suppose that 7'(m;,m;) is a simply connected elliptic
surface with multiple fibers of multiplicity m,, ms, then the product (m? —1)(m?—1)
is a diffeomorphism invariant of T'(m;,m;). By the Castelnuovo criterion, for any
my > 1 the elliptic surface T'(my,1) is a rational surface and hence diffeomorphic to
the connected sum of P? with a number of copies of P’ It is natural to conjecture
that for all pairs (mj,mz) with m;,m; > 1 that the unordered pair (my,m3) is a
diffeomorphism invariant of T'(mj;,mz). All of these results come by studying the
moduli space of stable bundles with ¢; = 1.

Let us turn now to minimal regular elliptic surfaces of higher geometric genus
with at most two multiple fibers. In [FMI1] it is proved that the product of the
multiplicities of the multiple fibers is a diffeomorphism invariant for such surfaces. In
proving this result it is first established that the Donaldson invariants of such a surface
are polynomial expressions in the cohomology class ks and the intersection form gs,
as defined above. In fact if S is a minimal regular elliptic surface with p, = py(S) > 1
and with multiple fibers of multiplicities m;, m it is shown that the highest order
term in ¢s in the expression for 4.(S) is

]
L mmapentz ™
where d = 4c — 3(p, + 1) and a = 2¢ — 2p, — 1. The result on the diffeomorhism
invariance of m;m; follows immediately. It is natural to conjecture that in this context
the unordered pair (m,,m;) is a diffeomorphism invariant. It would follow from this
conjecture that the diffeomorphism classification of such surfaces coincides with the
classification up to deformation equivalence of complex analytic structure.

It also follows from these computations that for all p, > 1 the line spanned by
the canonical class kg is left invariant by the group of self-diffeomorphisms. In fact,
this result is also established for complete intersections with p, even. For both these
results see [FM1].
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We mentioned above the fact that the moduli space of ASD connections over an
algebraic surface is identified with the moduli space of stable holomorphic bundles on
the surface. Taking the point of view of algebraic geometry, one is lead to consider
algebro-geometric analogues of the Donaldson invariants defined as follows cf, [O1,
02]. We denote by MY(S, H) the moduli space of H Gieseker semi-stable rank-two
torsion-free sheaves on S with trivial determinant and with c; = ¢, see [G]. According
to [G], this is a projective variety containing M.(S, H) as a Zariski open subset. We
denote by M.,(S, H) the closure of M(S, H) in M%(S, H). When c is odd there is
a universal sheaf over S x MS(S, H). We denote by F the restriction of this sheaf
to S x M.(S, H). Slanting with c;(F) defines v: Hy(S) — H*(M.(S, H)), which is
an algebro-geometric analogue of Donaldson’s p-map. By a theorem of Donaldson,
provided that c is sufficiently large, M.(S, H) will be generically smooth and reduced
of the expected (complex) dimension d = 4c — 3x(Os). For any c satisfying these
conditions we define é2*(S, H) by setting

84S, H)(a,...,aq) = (v(y U - Uay), [HC(S, H))) .

(The use of ‘st’ in the notation for the é-invariant refers to the fact that it is defined
using the moduli space of stable bundles. This stability has nothing to do with ¢ being
in the stable range.) One expects that when c is in the stable range and 62(S, H) is
defined, up to correction terms coming from moduli spaces with lower c;, it agrees
with the Donaldson invariant 7.(.S). One expects that will be no such correction terms
when c is sufficiently large. If c is not in the stable range and 6%*(S, H) is defined,
then we not only expect correction terms as above, but also correction terms coming
from ‘moduli spaces’ of properly slope semi-stable bundles with ¢; < c.

For the surfaces that we shall consider, it turns out that 73 is equal to 65t +(1/2)6%,
where 65° is defined using the moduli space of properly semi-stable bundles with c; = 3.

1.3 Outline of the paper

Let S be a regular elliptic surfaces with p, = 1. The stable range for such a surface is
¢ > 4. But we shall compute the invariant v3(S) which is unstable. As we indicated
above, we shall do this by computing 63(S, H), by computing 65*(S, H) which is the
contribution of the moduli space of properly slope semi-stable bundles with ¢, = 3,
and by showing that the moduli spaces for bundles with lower c; do not contribute
to 73(S). At this point the reader might ask, Why not compute a stable Donaldson
polynomial? The reason is that by the Riemann-Roch Theorem it is easier to describe
the reduced moduli spaces M(S, H) for ¢ < 3 than it is for ¢ > 4.

We now give an exposition of the contents of the various sections. In Section 2
we will define the unstable algebro-geometric polynomials é.(S, H) for any polarized
surface (S, H). These are defined in terms of moduli spaces M. 4x(S, H), where
7:5 — S is the blow-up of S at k distinct points (the subscript r in 6.r(S, H) has to
do with the choice of the polarization H). For the definition to make sense we must
show that for k big enough the moduli space M 4x(S, H) is generically smooth of the
expected dimension. This is proved by defining a scheme-theoretic stratification of
the moduli space. The strata are in one-to-one corresponedence with a subset of the
connected components of the “moduli space” of rank-two bundles on the completion
E of § along the exceptional set of m. Of course this correspondence is given by
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restricting vector bundles to E. Then we describe each stratum in terms of moduli
spaces of rank-two vector bundles on S. This is done by associating to a point [V] of
a stratum the isomorphism class of (7.V)**. A dimension count will allow us, thanks
to a Theorem of Donaldson ([D3, Fril]), to show that for k big the moduli space
M_4x(S, H) is generically reduced of the expected dimension. Finally we will prove
that the unstable polynomials are independent of the points we choose to blow up,
if these points are generic. To prove it we need to consider relative moduli spaces
over families of surfaces and compare the algebro-geometric polynomials for different
surfaces in the family.

In Section 3 we prove that for every pair of integers (m;,m;) there exists a reg-
ular, minimal elliptic surface S with p, = 1 with with multiplicities m;,m, and a
polarization H of S such that 63,(S, H) = v3(S). In fact S and H can be thought of
as generic. The proof is based on the surjectivity of the period map for K3 surfaces
and monodromy arguments. For this reason it does not generalize to cover other
cases (e.g. elliptic surfaces with geometric genus bigger than one). Nonetheless, it
is to be expected that the algebro-geometric polynomials are equal to Donaldson’s
polynomials in general (with some genericity assumption on the polarization H).

In Section 4 we analyze the moduli spaces M.(S, H) for 1 < ¢ < 3, and parameter
spaces P.(S, H) for H properly slope semistable rank-two vector bundles with ¢; = 0,
¢z = ¢. The moduli space M3(S, H) turns out to be of the expected dimension. It has
many irreducible components, which are in general non-reduced. We determine the
multiplicity of those components which contribute to the computation of cp(m;,ms)
and ¢;(my,my).

In Section 5 we prepare the way for the proof of the blow-up formula and the
computations of d3(S, H) by giving representatives for v(a) in two cases. The first
is when « is the homology class of a curve C of genus g on S. The choice of a
line bundle L € Pic?”'(C') determines (under some assumptions) an effective Cartier
divisor A(C, L) on M_(S, H) representing v([C]). These are the algebro-geometric
analogues of the real codimension two subsets of M.(S, gn) employed by Donaldson
([D3]). The second case is when « is Poincaré dual to a holomorphic two-form w €
H°(Q%): we reprsent v(a) by a Kihler two-form on M, (S, H) which was introduced
by Mukai and Tyurin ([Mul, T]).

Section 6 is devoted to the proof of the blow-up formula i.e., Theorem 6.0.1. This
formula says that for regular minimal ellipic surfaces S with suitable polarizations H
we have

1
73(S) = 8(S, H) + 585°(S, H) + 3065(S, H)qs

at least as multilinear functions on Hy (S;Q). (Of course, it follows from the general
form of 3(S), that this invariant is determined by its restriction to H; (S;Q).) Here
831(S, H) is an invariant of degree 6 defined in the usual way using the components of
M3(S, H); 65 an invariant of degree 6 defined using the components of Ps(S, H); and
€2(S, H) is an invariant of degree 4 defined using the four-dimensional components of
M;(S, H). The proof of this result is quite involved and relies heavily on the results
of Sections 2, 4, and 5.

In Section 7 we compute ¢y(m1,m2) and ¢;(my, mz). By the the blow up formula
and the computation of the contribution of the moduli space of properly semi-stable



8 1 INTRODUCTION

bundles this is equivalent to computing §3¢(S, H)(I' + T) and
&'(S, H)((H),[H),T +T,...,[ +T)
4

where I' € H,(S) is the Poincaré dual of a holomorphic two-form. These are the
computations that we actually do.

In the appendix we turn to the non-simply connected case and discuss those parts
of the argument which must be modified when m; and m;, are not relatively prime.

1.4 Conventions and notation

General conventions on schemes. By a scheme we mean a scheme of finite type
over C. The topology on a scheme is the Zariski topology unless we explicitely state
the contrary. A stratification of a scheme X is a finite collection {X;} of pairwise
disjoint subschemes of X such that as a set X is the union of the X;. If X is a scheme
then H.(X; R) (H*(X; R)) denote the homology (cohomology) of the reduced scheme
associated to X with the classical topology. If X =Y x Z is a product then py,pz
will be the projections of X to Y and Z, respectively. A polarization of a projective
scheme X is an H € Pic(S)® Q such that some positive multiple of H is a very ample
line bundle. We use the notation (X, H) to denote a projective scheme together with
a polarization of X; we then say that (X, H) is a polarized scheme. If D is a Cartier
divisor on X (or its equivalence class modulo rational equivalence) we let [D] be the
corresponding line bundle on X. On the other hand if X C Y is a closed compact (in
the classical topology) subset we let [X] € H.(Y; Z) be the homology class represented
by X. If X is a scheme and U is an open subset of X then we implicitly give U the
induced scheme structure. Let X be an irreducible scheme. We say that the general
z € X has a certain property if the set of geometric points of X which do not have
this property is contained in a proper closed subset of X. We say that the generic
z € X has a certain property if the set of geometric points of X which do not have
this property is contained in the union of a countable family of proper closed subsets

of X.

Surfaces. By surface we mean a smooth projective irreducible surface. If S is a
surface we let ¢(S) = h'(Os), py(S) = h*(Os). An elliptic surface is a surface S and
a map ¢:S — C to a curve such that the generic fiber is an elliptic curve. Assume
that the elliptic surface S is regular. We let F' = Fs be any scheme-theoretic fiber of
@, or its class in Pic(S). We let k = ks € Pic(S) be the indivisible class some positive
multiple of which is equal to [Fs]. We will often abuse notation and also denote by
ks the first Chern class of kg.

A family of surfaces is a proper map f:S§ — B of smooth varieties which is
surjective and whose fibers are surfaces. If b € B we let S, = f~1(b). A relative
polarization of S is an H € Pic(S) ® Q which restricts to a polarization on each S;. If
S is a surface we let Hilb"(S) be the Hilbert scheme of zero-dimensional subschemes
of S of length equal to n. If Z is such a subscheme we let [Z] € Hilb"(S) be the
corresponding point.
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Sheaves. By a sheaf on a scheme we mean a coherent sheaf. Let X be a smooth
scheme. If F' is a sheaf on X then the Chern class ¢(F') will be viewed as an element
of H*(X) (and not as an element of A*(X)). A family of sheave on X parametrized
by B with Chern class c is a B-flat sheaf F on X x B such that for all b € B one
has ¢(F|xx)) = ¢. If U is a subscheme of B we let Fy = Flxxv. If : X — Y is an
inclusion and F' is a sheaf on X we abuse notation and denote by F' the sheaf on Y
given by . F.

Let (X, H) be a polarized smooth scheme. There are two notions of stability for
sheaves on X. Let F' be a torsion-free sheaf on X. We say that F'is H slope semistable
if, for every inclusion G — F', we have that

| 1
we) DA s

a(F)-H. (4)

~

If in Inequality (4) there is strict inequality whenever 0 < rkG' < rkF' then F is H
slope stable; otherwise, we say that F' is properly H slope semistable. We say that F'
is H Gieseker semistable if, for every inclusion G — F, we have that

1 . 1
rk(G)x(G @ [nH]) < )

x(F ® [nH]) (5)

for n > 0. If in Inequality (5) there is strict inequality for all proper subsheaves G
(and for all n >> 0) then F is H Gieseker stable; if there exists a proper subsheaf
G such that we have equality then F' is properly H Gieseker semistable. Notice that
if F is H slope stable then it is also H Gieseker stable and that if it is H Gieseker
semistable then it is H slope semistable. We also notice that if two sheaves F', F’
on X are isomorphic outside of a codimension two subset then F' is H slope stable
(semistable) if and only if F is. A sheaf F is simple if Hom(F, F) 2 H°(Ox). Any
Gieseker stable sheaf is simple.

Let F be a torsion-free sheaf on a scheme X. There is a canonical exact sequence

0> F— F"—=Q(F)—0.

The sheaf @ = Q(F) is supported on the singularity set of F', which, since F is
torsion-free, is of codimension at least two. Hence F is H slope stable (semistable)
if and only if F** is. We let Z(Q) be the subscheme of S whose ideal sheaf is the

annihilator of Q.

Sheaves on surfaces. Let (S, H) be a polarized surface. Then by [G] there exists
a moduli space for equivalence classes of H Gieseker semistable torsion-free sheaves
on S with given rank and Chern class. The moduli space is a projective scheme. Two
sheaves on S are equivalent if the Graded sheaves associated to their respective Jordan-
Holder filtrations are isomorphic. If a sheaf is Gieseker stable then its Jordan-Hélder
filtration is trivial, hence two stable sheaves are equivalent if and only if they are
isomorphic. We will denote by M%(S, H) the moduli space of H Gieseker semistable
rank-two sheaves F' with ¢;(F) = 0 and c;(F) = c. We let M(S, H) be the open
subscheme of ME(S, H) parametrizing H slope stable locally free sheaves and we let
M_(S, H) be its closure in MZ(S, H). Notice that M(S, H) is a projective subset of
ME(S, H) but it does not inherit a natural scheme structure. If F' is an H Gieseker
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semistable rank-two sheaf with ¢;(F') = 0, ca(F') = ¢ we let [F] be the corresponding
point of ME(S, H). We say that M.(S, H) is good if in every irreducible component
of M (S, H) there is a point [F] such that k*(adF') = 0.

Claim 1.4.1 The moduli space M (S, H) is good if and only if it is reduced and of
pure dimension equal io the expected dimension d(c) = 4c — 3x(Os) + ¢(S).

Proof. Let [F] € M (S, H). The germ of M(S, H) at [F] is isomorphic to Def(F),
the universal deformation space of F. There is an obstruction map ®: H!(EndF) —
H?*(adF') describing Def(F), in the sense that Def(F) = ®~'(0). Furthermore the
tangent space to Def(F') at at its closed point is canonically identified with H*(EndF).
Let adF be the sheaf of traceless endomorphisms of F. Since F' is stable we have
h°(adF') = 0; by Riemann-Roch we conclude that
R'(EndF) — h*(adF) = 4c — 3x(Os) + ¢(S) .

From these facts it follows that M.(S, H) is good if and only if every irreducible
component is of the expected dimension and generically reduced. What is left to prove
is that if M (S, H) is good then it is everywhere reduced. By the above discussion
it is a local complete intersection and hence Cohen-Macauley. Since it is generically
reduced it follows from Theorem 17.3 in [M] that it is everywhere reduced. O

Elementary modifications. Let X be a scheme and let D be a Cartier divisor on
X. Let F be a sheaf on X and let Op(Q) be a sheaf on D. Let ¢: F — Op(Q) be
a surjective map. Then we call the kernel G of ¢ the elementary modification of F
determined by ¢. By definition G fits into the exact sequence

05>G—F30pQ)—0. (6)

As is easily checked if I is locally free and Op(Q) is locally free (as a Op module)
then G is locally free. Let Op(K) be the kernel of the restriction of ¢ to D, so that

we have
0 — Op(K) = Flp 3 0p(Q) - 0 .

From the Exact Sequence (6) it follows easily that we have an exact sequence
0~ Op(Q) ®[~D] = Glp * Op(K) — 0 (7)
provided that the map
F®Ox(-D)— F (8)
given by multiplication is injective. Under these circumstances we define the inverse
elementary modification of the modification determined by ¢ to be the kernel, F’, of
the map 3. Thus we have
0o F 5 G%O0p(K)—0. (9)
The reason for calling it the inverse modification is that, as is easily checked, F’ is
canonically isomorphic to F' @ [—D].
Now assume that F' has rank two and Op(Q) has rank one. Let ¢: D — X be the
inclusion. Then as is easily checked we have
a(G) = a(F)-a(D) (10)
c2(G) = cF) — wa(K) . (11)
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Polynomials and polarizations. Let V be a finite dimensional vector space over
a field k of characteristic zero (for us k equals Q, R, or C) and let f:V — k be a
homogeneous polynomial function of degree d. Then we define the polarization of f
to be the unique d-linear symmetric function

fFVvx-Vok
——————

d times

such that i(z,,r) = f(z) for all z € V. Since f and f determine each other, we
shall abuse notation and denote them by the same symbol. We let Sym?V* be the
vector space of degree d homogeneous polynomial functions on V.

Acknowledgements. It is a pleasure to acknowledge Bob Friedman’s help through-
out this work. In particular, his guidance concerning the work in Section 3 was invalu-
able. We are grateful to Stefan Bauer for pointing out mistakes in an earlier version
of the paper and for several helpful conversations, and in particular, for showing us
the way in which the four-dimensional components of M,(S, H) contribute. It is also
a pleasure to thank Millie Niss and Oisin McGuiness for writing programs to check
our formulas.



