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SiteCity: A Semi-Automated Site Modelling System

Yuan Hsieh”
Digital Mapping Laboratory
School of Computer Science, Carnegie-Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213-3891
E-mail: ych@maps.cs.cmu.edu

Abstract

This paper presents SITECITY. a semi-automated build-
ing ertraction system integrating photogrammetry, geo-
metric constraints and 1mage understanding clgorithms.
Erisaing automated building eztraction systems produce
mized resuits and : s clear that human :nterrvention
s required to correct mastakes from fully automated
systems. SITECITY gwves human opcrators the aotlity
to construct and manipulate three dimensional buiid-
ing objects using muitiple images. [mage understand-
ing algorithms are integrated into SITECITY (o assist
users. The automated processes in SITECITY use user-
delineaied roof boundaries as cues. and attempt to io-
cate the floor of a building and match the building oo-
Ject in other tmagqes. In addition, photogrammetric cues
are used !'o assist auvtomated processes. These auto-
mated processes are described and thewr performance
s evaluated, lustrating that automated processes n
SITECITY produce comparable performance to that of
human subjects.

1 Introduction

Efficient and accurate delineation of man made fea-
rures from digital aerial imagery has been a shared goal
of the photogrammetry and computer vision communi-
tles {or 2 number of vears. The proliferation of digital
photogrammetric workstations shows exciting possibili-
ties for automating tedious and time consuming menial

This work was sponsored by the Advanced Research
Projects Agency under Contracts DACA76-91-C-0014 and
DACA76-95-C-0009 monitored by the U.S. Army Topo-
graphic Engineering Center, Fort Belvoir. VA. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency, the U.S. Army Topographic En-
gineering Center, or the United States Government.

The Digital Mapping Laboratory’'s WWW Home Page may
be found at: http://www.cs.cmu.edu/"MAPSLab
“Currently with Lockheed Martin Astronautic, Denver CO
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tasks. Among these tasks are automatic aerial trian-
gulation, image mosaicing, and the generation of or-
thophotos and digital elevation maps (DEMs) [1: 2; 3;
1]. However. research in automated urban feature ex-
traction has produced mixed results [5: 8; 7; 8: 9; 10:
11], and few systems [10: 9] produce 3D descriptions
of extracted buildings in object space. In order to uti-
lize these automated processes. an integrated system 1s
v2eded that allows a user to correct and enhance the
results of the automated systems.

While most research has focused on fuily auto-
mated feature extraction systems, there are some sys-
tems which attempt to integrate manual and automatic
processes for extracting man-made features from aer:al
images. In [12], Mueller and Olson use a model based
approach to detect and delineate rectangular and peak
roof building models. In their system, users are required
to specify a range of plausible parameters for the build-
ing models and approximate locaticns of the buildings
in the image. The other system is the Cartographic
Modeling Environment (CME) [13]. It uses mode!-
hased optimization techniques such as snakes [14] o0
perform feature extraction in an interactive environ-
ment.

SITECITY is a semi-automated three-dimensional
site modeling system developed in the Digital Mapping
Laboratory at Carnegie Mellon University. The philo-
sophical and theoretical foundation that affected the
design of SITECITY can be found in {15], in addition.
a study of usability and validarion of SITECITY is pre-
sented. A snap shot of SITECITY is shown in Figures 1
and 2. SITECITY uses rigorous photogrammetric prin-
ciples and multiple images to accurately determine 3D
locations of objects, such as buildings or roads in the
scene. Photogrammetric methods supply cues to re-
duce the complexity of automated feature extraction
tasks [16]. Automated processes such as model match-
ing are used to reduce the number and complexity of
manual measurements. A set of graphical user inter-
face tools are provided for users to modify and create
arbitrary objects and to supply cues, such as area of
interest, to assist the automated processes.
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{a) Image measurement window: fhradl

(b) Image measurement window: fhrad3

Figure 1: Snapshot of SiteCity: image measurement windows

Figure 2: Snapshot of SiteCity: three dimensional
display window

9

e

Automated Processes in SiteCity

Currently, SITECITY is designed for detection and de-
lineation of three types of buildings, the peaked roof
buildings, flat roof buildings and rectilinear flat roof
buildings. Figure 3 shows the process fiow for estimat-
g 3D building object in SITECITY. In this scheme, a
building object 1s generated and verified using a single
image. The 3D position of the building is computed
by epipolar matching of the building objects in image
space. Other schemes are discussed in [15]. The initial
roof polygon is measured by a user.
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Three image understanding components are used
to support building measurement tasks: a verification
component. an object matching component and an edge
estimation component [15].

Verification Component: The goal of the ver-
ification component is to verify the existence of a hy-
pothesized building object in an image. The verifica-
tion component used in SITECITY uses full 3D geom-
etry to predict the visible building and shadow struc-
tures. When a 3D object is projected to an image,
some of the edges might not be visible due to the view-
ing geometry. Therefore, before any verification is at-
tempted. the hidden lines of the object in the image are
first removed from consideration. The result is a two
dimensional line drawing of the expected visible edges
of the object in the image. and the problem reduces
to matching this 2D line drawing to the image [17: l&:
19]. The verification component was rigorously evalu-
ated and appeared to behave as expected [15].

Edge Estimation Component: Often. it is de-
sirable to determine the terminating endpoint of an
edge of known directed orientation § and length ¢ in
an image:; the edge estimation component is used to
achieve this task [17] by utilizing Hough transform [20).

Object Matching Component: The object
matching component [17] is used to generate hypothe-
ses for a known object in the image given a search re-
gion. The search region is defined by the automated
processes that use this component. Given a projection
of a 3D object to the image, the goal is to find instances
of the projection of this object in the image. simiiar
Lo}the 2D object matching problem described in [18:
19).
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Figure 3: Process flow for single image building detection (SIBD)

2.1 Automated Processes in SiteCity

The three components described in the previous sec-
tion can be composed in a variety of ways to perform
different tasks (17].

Estimate Peak Edge of a Peak Roof Build-
ing: For a peak roof building model. once the user
measures the rectangular outline for the roof, the first
task is to estimate the position of the peak edge. The
expected edge length and orientation can be determined
by the user defined roof outline. and the search space
can be constrained by the vertical vanish lines. Edge
estimation component uses these information to deter-
mine plausible peak edge hypotheses. To evaluate the
~dge hypotheses. the verification component is used.

Estimate Building Height: In (9], the height
of a building is measured by using an imperfect se-
quence finding technique {21] to locate vertical edges.
Another clue in the image that allows us to determine
the building height is the location of the visible floor
edges, where the walls of the building meet the ground.
The orientation, length and location of the floor edges
are constrained by the camera geometry and the delin-
eated roof structure, and edge estimation component is
invoked to determine plausible floor location of a build-
ing. Each floor edge hypothesis produces a hypothe-
sized building model, and the verification component is
used to select the best model.

Epipolar Matching: Due to errors in the DEM.
and the uncertainties of the camera parameters, the
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projection of a 3D object onto another image might not
be correct. To achieve a good 3D measurement, it is of-
ten necessary to locate the projected object in several
images. If the location of the object is known in one im-
age. then the search space in another image is defined by
the epipolar line and the precision of the epipolar line.
Given the object model in the image and the search
space, the object matching component is used to gen-
erate a set of hypotheses. The verification component
is used to select the best hypothesis.

Automatic Copying: Frequently, many objects
in the scene might be identical. Suburban scenes oiten
have repetitive instances of the same buildings. Two
objects are identical if they share the same shape, size
and orientation. The object matching component can
be used ro reduce the effort of copying an object o a
different part oi the unage.

<
Y
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Ing component requires the determination of the search

area and the object. we devised three cues to specify
the search region: point, line and areal cues. These
cues are combined with the known object to form a
search region [17].

After processing by the object matching compo-
nent, a number of hypothesized object locations are
determined. Most of these hypotheses are erroneous
and the verification component is used to compute the
confidenee of each hypothesis. With a point cue. the
hypothesis with the best confidence is selected. For the
line and area cues, the best set of non-overlaping hy-
potheses are selected.
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Measurement Accuracy and
Geometric Constraints in SiteCity

i, .~ to uncertainty in the imaging parameters and the
.aze measur=ments, the caiculated 3D position of the
-xsured points will also ke uncertain. In order to as-
-« the qualiry of these measurements. a least-squares
cTLmiz n with error provagation [22] is implemented
i quantify the precision of all 3D measurements. The
“<t-squares anproach requires as input an estimate of
. > nitial measurement precision.

There have been numerous attempts to quantify
:mage measurement precision [23: 24; 25; 26]). These
reports show tnat the measurement precision on a dig-
‘u. image depends on Signal to Noise Ratio (SNR},
cuanuzation level and pixel size of the digital image.
“iowever, since an end user often does not have control
ver the quantization level. and estimating the SNR of
.. arbitrary image 1s difficult. SITECITY only considers
:11e effect of displayed resolution on the accuracy of im-
ace measuremesnts. Every measurement is classified into
one of four categories: User Input, Automated Process,
ial Position and Invisible [15]. These classifications
are used to derived initial measurement uncertainty.

However, despite careful image measurements. the
three dimensional object calculated by triangulating
multiple image measurements often does not conform
to our precise expectations for the real 3D object. In
addition, direct image measurements are sometimes im-
possible due to occlusions or shadows. Therefore, geo-
metric constraints [27; 15] that incorporate knowledge
about the object shape are utilized to produce a more
accurate 3D model. Another application of geometric
constraints is the construction of complex objects by
composition of a few primitive object types; this allevi-
ates the need to define a model for every type of object
one can encounter [13).

atin
auil
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4 Analysis of the Automated Processes

Turee scenes are used for this analysis: radt9-
A(Figure 4), radt5(Figure 4) and radtlO(Figure 4).
These scenes are part of the Fort Hood aerial images
distributed under the RADIUS program. There are four
images in each scene. consists of two near-vertical and
two oblique shots

4.1 Establishing the Ground Truth

In order to evaluate the accuracy and precision of the
delineation of an automated building detection system,

a ground-truth is needed to compare results.” In previous

studies [9; 28], the ground truth used in the automated
building detection system was typically generated by
one user. However, the ground truth generated by one
user will vary from that generated by another user.

In our experiment, a building in an image is mea-
sured by twelve users. A ground truth in image space
can be established by determining an average position
of a point using multiple measurements. An advantage
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Figure 5: Scene 2: Radt5

Y,

of generating a ground truth using multiple measure-
ments is the ability to generate an error measure for
each ground truth position. This error measure. ex-
pressed as a covariance matrix. allows us to quantify
the accuracy and precision of any individual measure-
ment compared to the mean. Figure 7 shows the covari-
ance ellipse (drawn as a diamond shape) for measured
building points on one of the four images for the radt¥
scene and suggests that the measurement uncertainty of
a point in an image is related to the guality of a corner



in an image. The average position of these measure-
ments is the center of the eilipse (diamond) and the
wireframe building shown in Figure 7 is drawn using
the average positions. The size of the ellipse denotes
the uncertainty of an image measurement and is drawn
so that the boundary of the ellipse represents a distance
of one standard deviation away from the mean.

Figure 7: Covariance ellipse for radt9wob-A images
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4.2 Evaluation of the Automated
Processes
1 Pixad |
{ i
,LMoau "‘AI T T
s | N |
oy ] N ! | Maasurement 24 |
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1 L_ |
asurement 1
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Fizure 3: Example contrasting Euclidean distance
and number of standard deviation for as-
sessing accuracy of measurements

For the analysis of the floor/peak detection pro-
cess, the manually measured roofs are extracted from
the manuaily measured buildings in all images. For the
evaiuation of the automated peak/floor detection pro-
cess. a total of 1920 roofs delineations in 12 images (4
images per scene) were used. A detail description of the
collection of these roof delineation can be found in [15].
Since there are only 20 buildings in all three scene. out
of the 1920 roofs, there are only 80 unique image build-
ings that were estimated; this redundancy allows us to
account for the sensitivity of the automated processes
due to dirferent user inputs.

For each manually measured roof in each image,
the floor detection process is invoked using the ex-
tracted roof as the initial condition to estimate the floor
position. If the building is a peak roof building, the po-
sition of the peak edge is also estimated. Once a build-
Ing 1s esumated 1n an 1mage, the location of every visi-
ble image point estimated by the automated processes
is compared with the ground truth measurements, the
mean position and the covariance matrix (Section 4.1).
Only the measurable points, visible in the image, esti-
mated by the automated processes are used. For each
image point estimated by the automated processes, the
distance to the expected ground truth position, in terms
of both the number of standard deviations away from
the mean, and the Euclidean distance in terms of pixels,
is computed. The Euclidean distance measures the ab-
solute accuracy of a measurement in relationship to the
ground truth position. On the other hand. the numbe:
of standard deviations measures the relative accuracy o



a measurement that accounts for the expected human
performance.

Figure 4.2 shows some examples contrasting the
two distance measures. The mean positions and the el-
lipses representing 1 standard deviation for both points
A and B are shown. Measurements 1A and 2A esu-
n:-te the position of point A and have the same dis-
tance from the mean position of pomnt A. The accuracy
1 terms of the Euclidean distance will be the same for
botl: measurements. However. in terms of the num-
her of standard deviations, measurement 1A is about
4c away from the mean and measurement 1B 1s only
about 0.5¢ away from the mean. The Euclidean dis-
tance measure suggests that both measurements are
zqualiy good. but compared to the performance of user
measurements. measurement 2A is significantly better
tnan 1AL

For evaiuation of a semi-automated system where
isers are involved, the measurements that agree with
nsers perception should be considered better. For point
A. users disagree on the location of the point along
the major axis of the standard deviation ellipse. but
agree about the location of the point along the minor
axis. Since measurement 2A agreed with users on this
respect. we expect the likelihood of a user to correct
measurement 2A to be less than measurement 1A. For
point B. the Euclidean distance of measurement 1B to
the mean position of point B is twice the distance of
measurements 1A and 2A to the mean position of point
A. Yet, the standard deviation measure of measurement
1B would be better than measurement 1A. This is be-
cause the position of point B is ambiguous in the image.

Using the number of standard deviations to com-
pare the accuracy treats the automated processes with
the same standard as human subjects:. the automated
processes need to perform as well as humans. At one
extreme, for a point where there is no disagreement on
its position, then any deviation in measurements us-
ing the automated processes will result in an infinite
numboer of standard deviations away from the expected
position, and we consider that the automated processes
failed to measure the position correctly, even if the Eu-
ciidean distance of the measurement is less than 1 pixel
away from the expected position. On the other hand.
if users cannot agree on the position of a point due
to poor images. then measurements made by the auto-
mated processes that is within one standard deviation
of the expected position should be considered good re-
gardiess of Euclidean distance because there is no con-
sensus in which to compare the measurements.

Both Euclidean distance and standard deviation
distance are used to evaluate the performance of the
automated processes. Table 1 shows the result of the

floor/peak detection process for each scene and im-

agc. The image column shows the image where the
floor/peak detection was performed, while npts is the
number of measurable points estimated by the auto-
mated processes. The remaining columns shows the
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cumulative percentage of points within N standard de-
viation and N pixeis of the manual measurements.
The evaluation of the epipolar matching process
uses the same metrics. To evaluate the epipolar match-
ing process, manually measured buildings in one image
are projected to other images and the epipolar match-
ing process is performed to locate the object position
in those images. The position estimated by the autc-
mated process is not manually corrected, to evaluate
the performance of the automated process. For this
experiment, 5760 epipolar matching processes are used
for this experiment for the buildings in 12 images [15].
A building delineation in one image is projected and
epipolar matched to 3 other images. Since there are
80 unique building delineations in all the images. 240
epipolar matching processes are performed for each set
of delineations. A total of 24 sets of different user de-
lineated buildings are used to account for variations
of the initial condition. Once the building objects are
matched, the analysis of the epipolar matching process
is similar to the analysis for the peak/floor detection

processes. The summary of the errors are shown in Ta-
ble 2.

5 Conclusions

In this paper, we presented a semi-automated system
for building delineation using multiple images. The
semi-automated system uses image understanding al-
gorithms to assist users. These automated algorithms
are unobtrusively integrated and reduce the complexity
of the measurement tasks. SITECITY allows the user
to measure building points on multiple images using a
simple graphical interface. These building points are
triangulated to estimate the three-dimensional position
and precision, and constrained according to the geomet-
ric model. Complex building objects can be constructed
by applying geometric constraints on several primitive
components. The current system allows us to measure
a large variety of building types. However, more gen-
eral building object models are needed to handle scenes
where the roof structures are complex. We are currentiy
studying methods to construct other difficult buiiding
objects within SITECITY, such as the use of a generic
peak roof building type, and building models with over-
hanging roofs.

Currently, the automated processes are affected by
a combination of scene complexity, image contrast, view
angles, and user performance; the automated processes
perform well when the scenes are simple with few occlu-
sions and good contrast. We originally expected that
an oblique image would have better performance than
a vertical image, because there are more visible build-
ing facets in oblique images. However, our experiments
do not show a clear advantage for oblique images. One
possible explanation is that while oblique images prc-
vide more information about the object, the search ar-
eas in the image also increase for the oblique image and



Tmage npts | e < lo | s<lo i w<lo 4 ixel | %5 <2p. 1% <3p.
raaty | 6 1771 3354 | 3542 : 30.21 94,79

| radt9ob | 26 33.21 79.17 || 43.75 | S7.30 97.92
radt0s 06 | | 5423 | =333 l $52.30 93.75 | 98.96

! radtowob || 36 ! I 31.25 | 4187 | 3021 1 T0.83 | 38.34

| raatd | 3b4 19kt 38.01 | 5130 ] 3238 25.31 04.12

: radtSob 1 1008 || 14.19 | 3532 | 35.16 | 20.93 | 36.35 37.00

I radtSs |28 || 2411 | 4732 | 5966 | 2810 | 5975 70.92
radtSwob /| 1296 || 11.88 | 31.36 | 48.59 | Ry Vi | B85531 | 77.16

i raatl0 376 421 384T | 3e.24 17.20 i 4723 55.03
radtlOob | 304 | 17.16 { 3849 | 55.26 I 5.75 ! 24.80 43.23
radt10s | 456 { 15.13 , 39.25 | 52.63 i 5.26 31.38 47.37
radtl0wob || 672 2.33 14.14 ’ 27.68 |l 8.28 27.98 46.88

! Total i 888 | 15.35 36.08 51.34 | 21.30 | 53.01 { 70.95 |

Table 1: Summary of floor/peak detection performances

based on standard deviation and distance

[Mmage | npts | B<lo! w<2el %<3 < lpixel 7%<2p.| %0<3p. |

| radat9 376 AT 2254 ) W85 J0.50 155.10 32.29 |
| radt9ob 576 | 1493 | 4115 | 6215 ||  34.38 72.05 $8.02 |
radtos | 576 | 20081 | 5122 ‘ 6840 || 2036 70.83 33.33 |
radtdwob 576 7.64 i 2532 | 4271 2036 | T1.88 29.75

[ raacl0 3002 | 19.12 | 3.7 | o0.d 5,52 53.00 T

| radt10ob 3812 | 3313 | 3738 | 7001 13.03 7.09 5420 |

| radtl0s 3672 | 2000 | 35.54 | 69.:6 3357 55.07 72.60

| radtlOwob (| 4236 1 1490 i 2077 | 42.35 1704 | 4278 58.85
radts T 3760 | 19.1r | 4300 | 023 | 9.2 55.30 STot |
radtsob | 6470 | 21.86 18.7 1 66.06 || 2374 60.07 79.92 |
radtss || 6768 | 24.10 | 5337 | TL35 || 2671 63.84 81.44 ‘
radtSwob || 7245 | 12.39 31.79 4857 | 27.83 64.83 31.01

[ Total T 44308 | 2054 4497 | 5030 | _ 24.08 3809 | 587 |

Table 2

increase the chance for mismatches. Another explana-
tion for the performance on the near vertical images is
the use of the shadow verification component. Build-
ing shadows can be a useful clue in vertical images [8],
where walls and floors are not visible.

The evaiuation of point estimation errors in terms
of both the standard deviation and the pixel distance
shows the need for automated processes that can align
edges and corner points with subpixel accuracy. Over-
all, approximately 50% of the positions estimated by
the automated processes are within 2 pixels of the man-
ual measurements. Users can often perform building
delineation within subpixel accuracies by adjusting the
display resolution. If the automated processes cannot
produce edges and points at the expected location, even
when the error 1s less than one pixel. most users wiil be
compelled to fine-tune the automated solutions. reduc-
ing the usefulness of the automated processes. In future
work. we hope to combine the use of fullv automated
systems with SITECITY to create a comprehensive en-
vironment for building delineation.

At present, SITECITY is actively being used to

generate accurate three dimensional ground truth for.

our automated building extraction research. and to

[1] C. Heipke.
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: Summary of epipolar matching performances based on standard deviation and distance

populate our spatial databases with buildings for re-
search in simulation of virtual worlds. The utility of
SITECITY for the task of building extraction illustrates
the effectiveness of integrating computer vision algo-
rithms 1n an interactive setting. The semi-automated
approach combines the advantages of fullv manual and
fullv automated systems to improve the overall produc-
tivity of site modeling, essential for the rapid construc-
tion of cartographic databases.
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A Shock Grammar For Recognition
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Abstract

We confront the theoretical and practical difficulties
of computing a representation for two-dimensional shape,
based on shocks or singularities that arise as the shape’s
boundary 1s deformed. First, we develop subpizel local
detectors for finding and classifying shocks. Second, we
show that shock patterns are not arbitrary but obey the
rules of a grammar, and in addition satisfy specific topo-
logical and geometric constraints. Shock hypotheses that
violate the grammar or are topologically or geometrically
invaiid are pruned to enforce global consistency. Sur-
vivors are organized into a hierarchical graph of shock
groups computed in the reaction-diffusion space, where
diffusion plays a role of regularization to determine the
significance of each shock group. The shock groups can
be functionally related to the object’s parts, protrusions
and bends, and the representation is suited to recogni-
tion: several examples illustrate its stability with rota-
tions, scale changes, occlusion and movement of parts,
even at very low resolutions.

1 Introduction

What does it mean to recognize an object from its
shape? Informally, this implies an identification of the
shape with a familiar category or class of objects, Fig-
ure 1. This notion of categorization is crucial to many
vision tasks, such as searching a database of shapes
rapidly, reasoning about the attributes of new or un-
familiar shapes, etc. Curiously, whereas this ability to
categorize appears to come naturally and effortiessiy to
humans. it has been extremely difficult to formalize for
computers. In this paper, we address the computational
aspects of this problem; specifically, we investigate the
description of generic shape classes from the mathemat-
ical perspective of curve evolution.

Fig_ure 1: These birds are eﬁ'ort;lessly grouped into two cate-
gories, based on similarity in “form”.
Existing proposals for shape representation emphasize

1063-6919/96 $5.00 © 1996 IEEE
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properties of its region, e.g., symmetry and thickness [1],
or of its boundary, e.g., curvature extrema [20] and in-
flection points, or of both {2]. An alternate classification
is according to those where shape is viewed statically as
a combination of primitives, e.g., generalized cylinders,
versus those where shape s explained developmentalily
via a set of processes acting on a simpler shape [14].
Returning to the region-based symmetric azris transform
(SAT) [1]. this view has spawned a vast literature on the
theoretical and computational aspects of skeletons. How-
ever, it is unfortunate that Blum’s key insizht that the
SAT provides for qualitative shape descripticns in terms
of “shape morphemes”, e.g., disc, worm, wedge, flare,
etc., is usually forgotten. Curiously, an evolutionary ap-
proach to shape description supports and complements
this view, and gives it a sound mathematical founda-
tion (8, 10]. To elaborate, Kimia et al. explore deforma-
tions of the shape’s boundary, a special case of which is
deformation by a linear function of curvature x:

{ % = (Bo — &N (1)
Cls,0) = Cols). )

Here C is the boundary vector of coordinates, N is the
outward normal, s is the path parameter, ¢ is the time
duration (magnitude) of the deformation, and o, 3; are
constants. The space of all such deformations is spanned
by the ratio 3p/8;, and time t, constituting the two axes
of the reaction-diffusion space. Underlying the represen-
tation of shape in this space are a set of shocks [11],
or entropy-satisfying singularities, which develop during
the evolution and are classified into four types, Figure 2
(left): 1) A FIRST-ORDER SHOCK is a discontinuity in ori-
entation of the shape’s boundary; 2) A SECOND-ORDER
SHOCK is formed®when two distinct non-neighboring
boundary points collide, but none of their immediate
neighbors collapse together; 3) A THIRD-ORDER SHOCK
is formed when two distinct non-neighboring boundary
points collide, such that the neighboring boundary points
also collapse together!; and 4) A FOURTH-ORDER SHOCK
is formed when a closed boundary collapses onto a single

! Whereas third-order shocks are not generic they merit a dis-
tinct classification because of their psychophysical relevance (9] and
the abundance of biological and man-made objects with “bend-



Figure 2: LEFT: The four shock types. RIGHT: The sides
of the shape triangle represent continua of shapes: the ex-
tremes correspond to the “parts”, “bends” and “protrusions”
noaes [9].

Figure 3: A classification of shock types based on the tan-
gents and the local neighborhood of the two shock generating
boundary points. The curvature dispanty is the sum of the
. two (signed) curvatures.

point. While these definitions are intuitive, they do not

easity lend themseives to algorithms for shock detection. 2 Shock Classification and Detection:
A xey idea of this paper is that shock computations can Local Operators

o= made robust by relying not only on better (subpixel)
local detectors and ciassifiers, but also on global inter-
actions between shocks, through a shock grammar. In
related work. Leymarie and Levine have simuiated the
grassfire transform using active contours [13]: Scott et
al. have suggested the use of wave propagation to obtain
ihe full symmetry set [21]; Kelly and Levine have demon-

In the design of shock detection operators we face two
primary challenges: that of arriving at a complete snock
classification scheme which leads to a computational al-
gorithm for detection. and that of obtaining accurate ge-
ometric estimates without blurring across singuiarities.
We discuss shock classification and detection in turn.

strated the use of annular operators in obtaining coarse 2.1 Classification of Shocks
object descriptions from real imagery [7); and Pizer et An intuitive approach is to classify a shock based on
al. have proposed a computational model for object rep- properties of the boundary points which collide at it,’
resentation via “cores”, or regions of high mediainess in Figure 3. Whereas this classification provides insight it
Intensity 1mages (2. Our work eextends the above ap- is difficult to implement directly, e.g.. the mapping of ..
proaches in a number of ways, which are perhaps best un- a shock to its associated bi-tangent points can become
derstood in the context of the dxsunctlon between shocks intractable in the presence of multiple nearby topolog-
and skeletons. _ . ical splits. Alternatively, one may rely on the differ- -
The set of shocks which form along the reaction axis ential properties of an embedding surface. an approach
reduces to the traditional skeleton when information re- which proves to be computationally efficient and robust.
garding type, group. and salience is discarded [23]. How- For theoretical as well as numerical reasons, the original
ever, first. the notion of type is essential Lo capture qual- curve flow is embedded in the level set evolution of an
itative aspects of shape. leading to generic perceptual evolving surface [3, 17). = = &(z,y,1):
shape classes? and algorithms for obtaining them, Sec-
tion 2. Second. the grouping of shocks depends not only o+ B(x)|Ve| =0, (2)
on their type but also on sequential, geometric and topo- SR
logical constraints obtained from a history of shocks. Sec- with the correspondence that the evolving shape is repre-
uon 3. This results in a hierarchical representation of sented at all times by its zero level set ¢(z,y,t) = 0. For
shape by shock groups, as illustrated by numerous ex- convenience we take the initial surface @o to be the signed
ampies. Section 4. Third, the notion of salience connects distance function to the shape’s boundary (although any

“nearby” shapes, e.g., Figure 19, providing a foundation Llpshnz contmuous function will suffice [3]). The clas-
for a topology over shape.for recognition. In conclusion,- szﬁca.uon 9[ hghocka based on differential properties of @

we suggest how the shock-based framework migh begx— =% mmarized in Figure 4 and Table 1. A first-order
tended to apply directly to xmag&s Se.ctxonﬁ Sp

f{"sh&k"‘m sponds to a discontinuity in the orientation
“of the Eangent. T to the level curve, computed from ¢
as arct.an(-u%‘;%) Since the colliding boundary points

like” components, e.g., fingers, limbs, legs of a table, etc. Also,

they are simultaneously the limit of first-order shocks tnvelllng have normals pointing in opposite directions, |[Vé|=0at
with infinite speed, but in opposite directions. - .. = - second-.third- and fourth-order shocks. These shocks
2First-order shock groups describe “protrusions ,lecond-order can be distinguished from one another by the Gaussian

shocks occur at “necks”, third-order shock groups describe s
“bends”. and viewing the evolution in reverse, fourth-order shocks curvature, Table 1. Note that this classification is invari

are sceds from which the shape is grown [9]. ant to the choice of the embedding surface and that all
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Figure 4: Shock classification based on properties of an em-
bedding surface. Top LEFT: First-order shocks occur at cor-
ners, corresponding to creases on the surface with |Vé| > 0.
ToP RIGHT: A second-order shock corresponds to a hyper-
boiic point with {Vo| = 0. Bortrom LEFT: Third-order
shocks correspond to parabolic points with [Vé| = 0. BoT-
ToM RIGHT: A fourth-order shock corresponds to an elliptic
point with {Vo| = 0.

[ Shock Tvpe Onentation i Curvature |
[T First I non-vanismung Vo | high x|
Secona 1solated vamismung Vo | x1k2 <0 |
I Thira | non-i1solated vamsmng Vo | xik> =0 |
Fourtn 'solated vamismng Vo | Kjakp > U |

Table 1: Shock ciassification based on the gradient |{Vo|,
the level set curvature x, and the principal curvatures
K1, Ko of the surface.

the necessary quantities can be computed locally®.

2.2 Subpixel Shock Detection

We deveiop a subpixel implementation of the above
ideas in order to obtain accurate geometric estimates in
the vicinity of discontinuities and to localize shocks. Note
that whereas the level set formulation supports subpixel
curve evolution an algorithm that only attempts to lo-
cate shocks at grid points will suffer from discretization
artifacts.

A class of techniques called essentially non-oscillatory
{ENO) schemes have recently been introduced in the nu--
merical analysis literature to address the problem of inac-
curate differential estimates in the vicinity of discontinu-
ities [6]. The basic idea is to select between two contigu-
ous sets of data points for interpolation the one which
gives the lower variation, such that at regions neighbor-
ing a discontinuity the smoothing is always from the side
not containing it. By replacing polynomials with geo-
metric interpolants: lines, circular arcs, etc., these ideas
have been adapted to the 2D problem of locating level
curves of an embedding surface while preserving and
explicitly placing orientation discontinuities (first-order
shocks) [24]. The method provides a subpixel contour
tracer (for open and closed curves) which can be used
to recover the shape’s contour from the evolving embed-

Pz Oyy—02 .
(l+0§+0'¢)§ '
(1403)dyy —20: 0y Sey +(1+03 ) dus

(1+ei+03)°72

Ve = (82 +¢;)”2; KK =

Ky + ry =
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Figure 5: CLOCKWISE FROM TOP LEFT: The geometric ENO
interpoiation techmque (24] preserves discontinuities in the
vicinity of first- , second-, third-, and fourth-order shocks;
gndlines are overiaved and detected corners are marked.
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Figure 6: LEFT: The zero crossing contours of (|Va| — ¢)
demarcate regions around the putative shock points. RIGHT:
Zero-crossing curves of or and ¢y Intersect at ezactly three
points, two of which are fourth-order shocks, and one of which
is a second-order shock, as determined from the sign of xixz.

ding surface, Figure 5. and can be extended to higher
order shock detection as follows. Recall that |[Vé| =0 at
higher order shocks. Therefore, the geometric interpola-
tion method may be used to find ¢ crossings of |V3|, Fig-
ure 6 (left). However. this approximation always yields
2D regions surrounding the putative shock points. As a
soiution. since ©r and oy must each go to zero indepen-
dently for {Vo| to go to zero, the problem can be reduced
to two 1D problems by considering zero-crossing curves of
or and o,*, and finding overlaps, Figure 6 (right). This
suggests the aigorithm for higher order shock detection
outlined 1n Figure 7: further detaiis appear 1n {23].

3 Shock Grouping: Global Interactions
The fact that the set of shocks formed under pure
reaction (3, = 0) provides the SAT [23] implies that geo-
metric and topological properties that hold for skeletons,
e.g., those studied in [4, 22], must hold for shocks as
well. We examine three types of constraints on shock
formation in Figure 3: sequential, geometric and topolog-

“Care must be taken to avoid regions where either o: or ¢y is
identically zero over a neighborhood of grid points. Fortunately,
©r and ¢y cannot both be identically zero over the same regions,
since that would impiy a 2D region of third-order shocks, which is
an impossibility.
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Pizure 7. Hicner order shock detection based on overiaps

= 0 and ¢y = O withuin a ceil. The four neighoonng
znd points are marked with filled arcles. LEFT: When the
two curves pass through the same cell and are not parallel. a
econd-order or fourth-order shock is piaced at the point of
initersection (provided that it lies withun the cell). based on the
sign of the Gaussian curvature. RIGHT: When the two curves
vass through the same cell and are close to parallel (their
siopes are within 10 degrees), a set of third-order snocks is
.nterpoiated as a ine drawn through the averaged endpoints.

~al: the first type pertains to aliowed sequences of shccks
. a group: tne latter two relate Lo properties of one or
more SNOCK €roups (smootnness. connecuvity. etc,. Tne
:onstraints suggest a course of actions to be taker In
sraer to prune impossible shock configurations and or-
zanize survivors into more giobal structures. Figure 10.
turtner, the sequential constraints can be concisely de-
scribed via a shock grammar. Formaliy, a grammar G
1s a language generating device. which is defined by a
quadruple (17 Z.R,S) [12]. Here V' is an alphabet di-
viged into two parts, the set of terminal symbols T C V'
and the set of non-terminal symbols V" — . S, the start
symbol. 1s an element of V' — £ and R. the set of ruies,
is a finite subset of V*(1" — T)V" x V" The grammar
operates by beginning with a start symbol and then con-
structing a string via repeated applications of the rules,
;... by identifving a substring in the current string which
appears on the left hand side of one of the rules, and re-
piacing it with the string that appears on the right hand
side of that ruie. We introduce a shock grammar, SG.
as follows:

‘-:{51.5; 5;.5..51.5’,",5} I
—={Sr} |
i ff:{s"—‘S)Ls —FSzE sv-—) .,._.S]-—»Sq,S]E—O'
| SiBHE.SiE = S\SgB.SiE =% SenSa b = 5581 By Sk — |
| 82518, 8eE — S557.8: = S48} |

The symbols S;,S,.S4 represent first-, second-, and

urth-order shocks. Sy is a start symbol, St is a ter-
minal, and since third-order shocks never appear in iso-
lation, a group of third-order shocks is an element of
tne alphabet, denoted by S3. E represents the end of
a growing shock sequence and is used to enforce the re-
quirement that shocks be added oniy to that end. mak-
Inz the grammar context dependent. Figure 9 illustrates
tne appiication of the grammar. Note that whereas tne
grammar suffices to describe the composition of a shock
group. it does not reflect the geometric and topologi-
cai constraints: this may be possible by embedding the
grammar in a graph.
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| P1. First orger shocks fiow with finite speed. excent ior a
i set of isolated points (e.g.. initial first-oraer shocks flowing
| outwards from a second-order shock).

| P2. First and third-order shock directions change contini-
| ousiy, 1.¢., these shock branches cannot have anv ccrner:

| P3. Secona-oraer snocxs are initial and are isoiatec iren.
{ other second-oraer. tiura-order. and fourth-order snocks

| R1. Once formed. a second-order shock must give nse o
! two first-order snocks that flow out of it. The speed of eacn
| first-oraer shock is 1nfinute.

| P4. A first-oraer shock opranch can either merge with an-
| other first-oraer snock branch. terminate in a thura-oraer
| shock branch. or terminate in a fourth-order shock.

| P5. Two third-order shock branches cannot intersect.

| P6. A first-order branch can flow into or out of a third-oraer
| branch’s endpoints. but never into or out of a point that ues
{1n the interior of a third-order branch.

| R2. A singie first-order branch that flows mto or out of a
! third-order branch’s endpoints. snouid maintain continu:t:
| of onentation.

| P7. Fourth-oraer shocks are terminai.

| P8. A arcle is the oniv shape describec by an isoiated
| (fourth-order) shock. Non-circular shapes cannot have any
| isolated shocks.

| R3. For non-circular shapes. each fourth-oraer snock must
| have at least one first-oraer shock branch fiowing nto :t.

Figure 8: Proofs and expianations of propositions P1-P8
and remarks R1-R3 appear in [23]. An snitial shock is one
which may give nise to other shocks. but can have no shocks
flowing 1nto it: a terminai shock has no shocks flowing out of
it. but may have shocks flowing into 1t.
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Figure 9: The exampies illustrate the construction of differ-
ent shock groups by repeated application of the ruies of the
shock grammar.

4 Examples

We illustrate the robustness of our two-stage nu-
merical aigorithm for shock detection and classificatior
with several examples. The reconstructions are simu-
lations of the “growth™ of each shape from its shock-
based representation, with linear interpolation oi tht
radius function between successive shocks on the sam:
branch®. Figure 11 depicts the evolution of shocks for &

3The iniual distance transform is blurred very slightiy to com-
bat discretization efiects, hence the reconstructions have shghtl}
rounded corners.



Al. A first-order shock shouid be appended to the end of an
! exasting first-order shock group so long as it: 1) mantains
icouzxnmty in position as well as direction of flow with the
ilasn shock added to the group, and 2) has finite speed. Oth-
| erwise. 3 new first-order shock branch should be initiated.

| A2. A second-order shock hypothesis should be discarded
if it is not initial, or if it does not subsequently give rise to
two outward flowing first-order shock branches. Otherwise
it shouid be kept and identified as the parent of the two first-
order shock branches.

A3. A single first-order shock branch that intersects a third-
order branch, or that terminates or emanates from a third-
order shock branch’s endpoints without maintaining conti-
nuity in orentation, should be discarded.

A4. Two third-order shock hypotheses should be grouped
together if they are neighbors. and if their onentations are
consistent (the shock group has to be smooth). Distinct
groups of third-order shocks should not intersect, and any
third-order shock that remains isolated should be interpreted
as a fourth-order shock.

A5. A fourth-order shock hypothesis that is not isolated
from other second-, third-, or fourth-order hypotheses should
be discarded. A fourth-order shock that is isolated shouid
| be interpreted as a circle. otherwise it should be identified as
| the point of annihilation of the merging first-order branches.

Figure 10: Actions A1-A5 are used to prune impossible
shock configurations and organize surviving shocks.

dumbbell shape, leading to its description as two “seed-
based” parts (fourth-order shocks) connected at a “neck”
(second-order shock), with each part having three pro-
trusions (first-order shock branches). Figure 12 illus-
trates the robustness of shock detection under rotation
and stretching: the structural description of each triangle
as a “seed with three protrusions merging onto it” and of
each rectangle as a “bend with two protrusions at each
end”, is preserved. Next, the description of the shape
in Figure 13 (top) as a hierarchical collection of protru-
sions converging onto a single seed is intuitive and can
be used for recognition. The representation of the tool in
Figure 13 (bottom) is suited to recognition: a different
pair of pliers would match the structural description of
“two large bends, attached at one end” (the handles) con-
nected to “two smaller protrusions. attached at the other
end” (the head); the same pair of pliers would have to
match relative shock locations, formation times and ve-
locities as well. Figure 14 illustrates the robustness of the
representation in the face of occlusion, movement, and
bending of parts: regions remote to the deformations are
not affected and a qualitative description as a collection
of bends attached to a hierarchy of protrusions emerges
throughout. Finally, Figure 15 depicts the shock-based
description of two handwritten letters (left) and the com-
Putation of shock speed and acceleration (right). In all
the examples the shock branches are smooth and the rep-
resentation allows for precise reconstruction and accurate
metric measurements, as well as for qualitative percep-
tual shape classes. The latter are crucial for the identi-
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Figure 11: Top: The evolution of shocks under inward re-
action for a rotated dumbbell shape; the arrows depict the
velocity of the last shock added to each branch. BoTTom:
The growth of the dumbbell from its shock-based description.

Figure 12: The shock branches remain smooth and no spuri-
ous branches are added under rotation or stretching. Further,
the structural description of each triangle as “three protru-
sions converging onto a single seed” and of each rectangle as
a “bend with two protrusions at each end” is preserved.

fication of two different shapes as instances of the same
category.

5 Structural Diffusion

A variety of approaches have been proposed to deal
with the sensitivity of the SAT to boundary details, e.g.,
blurring to create a multiresolution SAT [19], the use
of residual functions [16], and non-linear diffusion of the
shape's angie function [18]. Following the theoretical de-
velopment of (8], the approach we suggest is to use cur-
vature deformation () as a smoothing process to assign
a significance to each shock group®:

Remark 1 (Significance) The significance of a shock
group is proportional to its survival with increasing
amounts of curvature deformation. ’

8This choice enforces a number of desirable properties, e.g., in
the case of 3, /B9 =+ oo, any embedded curve will evolve to a round
point without developing self-intersections or singularities [5], and
the number of extrema and inflection points is non-increasing, im-
plying that no new shock branches can form.



Figure 13: The shock-based description and growth of a
snape composed of trapezoids (TOP}, and of an industrial
snape (BOTTOM). The onginals shapes are on the left. and
the reconstructions on the right.
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Figure 14: Shock detection under occlusion, and move-
ment/bending of parts. LEFT: The original shapes. MmD-
DLE: The shock-based description. RIGHT: The reconstruc-
tion from shocks.

We consider the effect of diffusion on each shock type:
the detection of shocks with diffusion is coarse (not sub-
pixel. and is only intended to provide a measure of sig-
nificance for shocks obtained under pure reaction. When
B. # 0 we interpret a first-order shock as a maxima of
{sufficiently high) positive curvature. The survival of a
first-order shock group with increasing diffusion refiects
the “scale”™ of the corresponding protrusion, Figure 16
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Figure 15: LEFT: The shock-based description of two hand-
wnitten letters. RiGHT: First-order shock speed and accei-
eration. The shock occurs at point B. and after one uime
step has moved to paint C. With AB = k7' sn{f/2), tne
speed of the shock is obtained as: s = AB = So/s1n(8/2;
The acceleration is obtained by difierentiating the speed as
a=s(82 — s*)x/Bo.

-0.2, 5
Each column depicts the shock groups that have been de-
tected up until the present time, with the evoived shape over-
laid. Observe that branches are annihiiated in oraer of the
scale of the protrusion they represent.

Figure 16: LEFT TO RIGHT: 6o

“: the survival of a second-order shock with diffusion re-
flects how narrow the corresponding neck is, Figure 17:
diffusion regularizes bend-like shapes with boundary per-
turbations [23]; and the survival of a fourth-order shock
with diffusion refiects the degree to which it represents a
local center of mass for a shape, e.g., compare the right-
most and leftmost fourth-order shocks in Figure 17.

The above notion of significance induces a hierarchi-
cal ordering of shock branches from fine to coarse. 1.¢€..
branches obtained under pure reaction are removec In
the order that they annihilate under diffusion. and the
structures that they represent are literally broken off.
Figure 16. This brings out the coarse level simiiarity be-
hapes be ng to the same category. Figure 19.
an essential requirement for recognition.
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6 Shocks from Images

In conclusion, we suggest that the shock-based repre-
sentation can be extended to apply to fragmented shapes
as they typically arise in real imagery by allowing loca!
edge hypotheses to interact via the evolution of a local
embedding surface; recall that any Lipshitz continuous
surface can be used. Such a surface can be constructed
using the output of an edge operator, 1.€.. by first plac-
ing oriented receptive fields at each edge, Figure 20 (topl.

7In analogy to the lifecime of a grev-level blob in scaie space [15}-
when two protrusions are nearby the shock branches may merge:



