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INTRODUCTION

In [40] G. Darboux introduced differential operators in connection
with the Euler equation. In recent years this method for the repre-
sentation of solutions of partial differential equations has become
the object of increasing interest. Particularly this is based on the
fact that these representations permit a detailed investigation of

the function theoretic properties of the solutions. Especially in case
of the differential equation

) (1+e22)°w _ + en(n+1)w = O, € = +1, ne IN,
2

it was possible to generalize a number of statements of the classical
function theory. In the first place by reason of the results proved
by St. Ruscheweyh a function theory associated with the differential
equation (*) could be developed. These results are treated in the
subsequent contribution of St. Ruscheweyh. On the other hand the
assertions obtained by differential operators permit a number of
applications. Moreover, in various papers certain connections between
differential and integral operators were investigated. However, a ge-
neral characterization of those partial differential equations which
permit representations of solutions by differential operators could
not be found up to now. So much the more in this stage of the investi-
gations a survey of the known results is of particular interest.

In the first chapter in the case of the differential equation

w _ + Al(z,z)w_ + B(z,2)w = O
zz z

general conditions are derived for the appearance of solutions which
may be represented by differential operators of order n operating on
holomorphic respectively antiholomorphic functions. By certain additi-
onal conditions concerning the form of these differential operators one
is led to the known representations of solutions. Subsequently various
methods are characterized which permit to get corresponding represen-
tations of solutions for certain classes of other partial differential
equations. Here, apart from solutions of the equation hzz = 0, also
solutions of other elliptic or parabolic differential equations are
used as generators.

The second chapter deals with several applications of the representa-



tion of solutions derived here. First a new representation of the
spherical surface harmonics is treated. Besides, a corresponding class
of functions is considered which arise in connection with the wave
equation and may be called hyperboloid functions. Moreover, a repre-
sentation of the surface harmonics of degree n in p dimensions is
treated. The real and imaginary parts of certain classes of pseudo-
analytic functions satisfy elliptic differential equations of the type
considered here. Thus, it is possible to derive simple representations
of these pseudo-analytic functions in simply connected domains and in
the neighbourhood of isolated singularities. Moreover, these results
permit various applications, for example, for a differential equation
in the theory of functions of several complex variables, for a class
of pseudo-analytic functions with a "sharp" maximum principle and for
the determination of Vekua resolvents. By use of the results proved in
Chapter I,5 in connection with the generalized Darboux equation it is
possible to obtain representations for further classes of pseudo-ana-
lytic functions. By means of the complex potentials corresponding to
these functions one is led to elliptic partial differential equations
for which a representation of the solutions was not known up to now.
Finally the integro-differential-operators treated in Chapter I,4 may
be used for the representation of pseudo-analytic functions.

In Chapter II,4 we deal with a class of generalized Tricomi equations
which lead to differential equations of the form considered here in
the elliptic half-plane, whereas we get an Euler-Poisson-Darboux equa-
tion in the hyperbolic half-plane. Thus, in either case the solutions
can be represented by differential operators. Moreover, by means of
these representations it is possible to determine integral-free funda-
mental solutions in the large. These results are of particular interest
since generalized Tricomi equations arise, for instance, in connection
with the theory of transonic flow.

The assertions proved in Chapter I,2a may be used also for the repre-
sentation of solutions of generalized Stokes-Beltrami systems. First,
a system is treated which is closely related to a Stokes-Beltrami
system which was considered by A. Weinstein in connection with the
development of the generalized axially symmetric potential theory.
Moreover, we deal with several systems of first-order partial differen-
tial equations to which we are led by certain functional-differential-
relations for solutions of the Euler equation. Finally, by using the
results of Chapter I,2a representations of solutions of the iterated
equation of generalized axially symmetric potential theory are derived

which arises in a number of physical problems.



Within each chapter, the sections, theorems, and formulas are numbered
consecutively. If quoted, or referred to within the same chapter, only
their own number is mentioned. Otherwise the number of the chapter is

added, for instance, Theorem II,4 or (I,17).

I wish to thank Mrs. Heide Ditsios-Mack for her excellent typing of

the manuscript.

August 1979 K. W. Bauer



CHAPTER I

Representation of solutions by differential operators

1) Polynomial operators for the differential equation w _+ Aw_+ Bw = O
2z z

a) Holomorphic generators

In the present paper we use the following notations. We set
z = x + iy

where x and y are real variables. i denotes the imaginary unit. Complex

conjugates are denoted by bars, e.g.
zZ = x - iy,

We use the formal differential operators

a_ . 2 _ 53
(q) r = 3; = ( )z = Z(OX iay)
and

o) 1,9 3
(2) 8 = — = ( ) = =(o— + i=—) .,

2z 5 2 9x dy

Apart from the usual rules in case of differentiable functions we have

(3) w,o= (w_), w_=1(w).
z

z 2
z

For a real-valued differentiable function, i.e. in case w = G, we
obtain

(4) w o= (w) .

Furthermore, for a holomorphic function g(z) we have



(5)

1 i
(Re g), = 39', (Img), = -3g"',

Re g denotes the real part of g, Im g denotes the imaginary part of g.
Moreover, by (1) and (2) we get

(6) dw _ = Aw,
22
where
2 2
A = ) S+ 3 -
9x dy

is the Laplace operator.
We consider partial differential equations of the form

w _ + alz,z)w, + b(z,2)w_ + c(z,2)w = O,

2z z
where a,b,c are given analytic functions in some domain. By a suitable
transformation we can eliminate one of the two first derivatives.
Therefore, we proceed from the normal form

(7) w _ + A(z,z)w_ + B(z,z)w = O,
2z z

We denote by D a simply connected domain of the complex plane, and we
suppose that A(z,z) and B(z,z) are analytic in D.

By a solution of (7) in D we mean a function defined in D which has
continuous partial derivatives up to the order two and satisfies
equation (7) in D. By a theorem of E. Picard (cf. e.g.[88], p.162)
such a solution is analytic, in particular there exist derivatives of

all order.
Now we consider polynomial operators of order n. We set

(8) H(D) = { g(z)1 g(z) holomorphic in D}

and get by



n e
(9) P (r) = 2 a*(z,z)r
n o k

the most general linear partial differential operator of order n on
H(D). In view of future simple representations of solutions in place
of (9) we use the form
; n -k
(10) Pn(r) = E; ak(z,z)R° 5

k=0
where the coefficients ak(z,z) are twice continuously differentiable
functions in D and
(1) R, = a(z)r ,

where a(z) is a holomorphic nonvanishing function in D.

Now we ask for all differential equations (7) which have solutions of

the form

(12) w=Pg, g € H(D).

If we substitute (12) into (7), first we find a, = an(z). On account
of (11) we put a, = 1 and obtain

sa_, \
rsa, + A sa, + Bak + 2 =0
(13) for k = 0,1, ..., n-1 with a_, = 0
sa, _, = -aB .

In characterizing the coefficients A and B in (7), in general, we are
led to non-linear partial differential equations. In the sequel we
consider some examples.

For n = 1 the system (13) reduces to
rsa  + A sa, + Bao = 0

(14)
sao = -=aB .,



If B 4 O in D, we get

(15) (log B) _ + B + A_ = 0.
2z z

Without loss of generality we may use a = 1 and obtain the solution
(16) w=g' +ag,

where a = A + (log B)z. If w is a solution of (7) which may be repre-
sented in the form (16), we have

i.e. for a given solution w of this kind the generator g(z) is uniquely
determined.

If the coefficient A in (7) satisfies certain conditions, we can de-
rive further assertions. If, for example,

A_ = Bla(z)B(2) - 1],

z

where a(z) and B(z) are holomorphic nonvanishing functions in D, it

follows
(log B) _ + afB = O,
z2z
and by
G = afB
we get the differential equation
(17) (log G) _ + G = O,
zz
Setting here
log G = 2W,
we obtain the Liouville equation
(18) aw _ = -,



This is the special case of a differential equation which was investi-
gated by G, Warnecke [104]. We quote some results of that paper as far
as they are of interest for the following research.

Theorem 1

a) Let D* be a simply connected domain of the complex plane. Let G be
a solution of the differential equation (17)

(log G) _ +G =0
2z

in D*, Let D be a simply connected domain compact in D*®. Then, we can
represent G in D by

(19) G = :éﬂ!zﬁﬂilz%
(9 (2)+p(z))

where v(z) and y(z) are suitable holomorphic or meromorphic functions
which satisfy the following conditions:

(i) ¢(2) and w(z) have only a finite number of poles in

D of at most first order.
(20)
(ii) ¢(z) and y(z) have no common poles in D,

(1i1) (p+J)y'y' # O in D,

b) Conversely, (19) represents a solution of (17) in D for each pair
of holomorphic or meromorphic functions @(z) and p(z) which satisfy
the conditions (20).

c) bvery real-valued solution of (17) defined in D may be represeinted
by

G - 2e£'(2)F(2)

(21) 5 €= &
[1+e£(2)F(2) ]

where f(z) is a suitable holomorphic or meromorphic function in L
which satisfies the conditions:
(i) £(z) has only a finite number of poles in D of at
(22) most first order.
(ii) (1+eff)f' 4 O in D.
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d) Conversely, (21) represents a real-valued solution of (17) in D for
each holomorphic or meromorphic function f(z) which satisfies the con-
ditions (22).

On the supposition for D we get the following
Theorem 2
a) The differential equation (7)

w + Aw_ + Bw = o, B 4 O in D,

2z z

has a solution of the form
(23) w=g' + a 9, g(z) € H(D),
if, and only of, the coefficients A and B satisfy the relation

(24) (log B) _ + B+ A_ = O.
zz z

Then, the coefficient aj in (23) follows by

a, = A + (log B)z.

b) For every given solution w of (7) in D which may be represented by

(23) the generator g(z) is uniquely determined by
W
g(z) = = g

c) If Az = B[a(z)B(z)-1], where a(z) and B(z) are holomorphic nonva=
nishing functions in D, we obtain by (24) with G = afB

(log G) _ + G = O.
44

If the domain D satisfies the supposition in Theorem 1, the coeffi-
cient B may be represented in the form

_ -20¢'(2)0'(2)
a(z)B(zS[Q(z)+wzzi]2




1
where 9 (z) and Y(z) satisfy the conditions (20).
If we impose on the coefficients ak(z,i) in (10) certain conditions,

we may expect that the system (13) can be solved for arbitrary n & DL1)
We suppose B # O in D and set

v

(25) ' 3 = cknn-k . n> 2,
where

c €€ ¢, #0, c =1, M=7(z,2) %+ 0 in D.

Then, (13) takes the form

n-k-1 n-k-2 n-k-1

(26) ¢ {(n=k) n _ + (n=k)(n=k=1) M- + Aln=k) m_ o+
) zZ z z
5 x
+ Bnn-k} + -531(n+1—k)nn' n_ =0
z
= O,

for k = 0,1, ..., n=1 with Ch-1

(27) = —aB .,

c _a_
n-1 z

First we get €41€ps eeey € 4 + O. Now we consider (26) with kX = O and
k = 1 and obtain by (27)

|
z c
(28) - TE =<,
1
where
c =2 |Sn=1_ %
n-1 n c, °

In the case ﬂz =0, i,e.

n= y(zJ), y(z) € H(D),

ﬁWe denote by W, Z, IR, and € the set of natural, integer, real, and

complex numbers respectively. Moreover, we use ]No = Nvui{o} .



