[OMPUTING SYSTEM
FUNDAMENTALS

an approach based on microcomputers

Kenneth J. Dunhof
(arol L. Smith

—

[

OOeoe

OO0 e s
SN
111 1

?

S/

COMPUTING
SYSTEM
FUNDAMENTALS

An Approach
Based on Microcomputers

KENNETH J. DANHOF
CAROL L. SMITH

Southern Illinois University at Carbondale

A
V¥V ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts « Menlo Park, California
London « Amsterdam » Don Mills, Ontario « Sydney

This book is in the
ADDISON-WESLEY SERIES IN COMPUTER SCIENCE

Consulting Editor: Michael A. Harrison

Library of Congress Cataloging in Publication Data

Danhof, Kenneth J
Computing system fundamentals.

Includes bibliographical references and index.

1. Electronic digital computers. 2. Microcomputers.
I. Smith, Carol L., joint author. II. Title.
QA76.5.D252 001.6'4 79-14933
ISBN 0-201-01298-7

Copyright © 1981 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1981 by
Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada. Library of Congress Catalog Card No. 79-14933.

ISBN 0-201-01298-7
ABCDEFGH-MA-89876543210

COMPUTING
SYSTEM
FUNDAMENTALS

An Approach
Based on Microcomputers

PREFACE

This book is intended as a textbook for an introductory course on computer
organization and systems at the sophomore or junior level. As such it
corresponds to the CS3 course described in the ACM 1978 curriculum guide-
lines. The primary prerequisite is a first course in programming with a high-
level language such as FORTRAN or PL/1.

There are two salient features in the approach taken in this textbook.
First, there is the matter of teaching the fundamentals of computer hardware
and software (and the interplay between the two) and doing this in an
unrestricted hands-on environment. The second feature is the incorporation of
the most recent development of computer technology, the microprocessor,
into the computer science curriculum.

Relative to the first issue, it is generally recognized that the future com-
puter science or computer engineering student must understand both the hard-
ware and software aspects of computers. Although in the past computer sci-
ence curricula have tended to be either heavily software- or heavily hardware-
oriented, the most recent curriculum specifications suggest a greater unifica-
tion of hardware and software within one discipline. In fact, both the recent
ACM and IEEE curriculum guidelines suggest the use of minicomputers or
microcomputers in a hands-on laboratory situation as a means of achieving
this goal. This text constitutes a realization of this approach.

Returning to the second basic feature of the book, we believe that, while
the microcomputer revolution is currently spreading through various applica-
tion areas, it has not really affected the computer science curriculum itself to a
significant extent. This book is designed to correct the situation. It is apparent
that not only should the microcomputer be clearly understood by computer
science students, but that it is at precisely this level that one can best view and
study the entire system. The course is constructed to utilize the microcomputer
both as an object of study and as a laboratory tool. The low cost of microcom-

vi Preface

puters makes it possible to give each student essentially unlimited hands-on
access to a microcomputer.

The course is structured in terms of programming ‘‘levels’’ and four
““modules’’ support the development. Module I (Chapters 1-5) introduces the
specific microcomputers to be studied—the Motorola 6800 and the Intel 8085.
In this module, the student is taken from the machine language level to the
assembly language level. Chapters 2 and 3 are devoted to the instruction sets of
the two microprocessors. Chapter 4 introduces the basic programming con-
structs and compares the two instruction sets. Chapter 5 covers basic hardware
components and discusses system architecture for the two microcomputers.

Module II (Chapters 6 and 7) introduces the students to system /O pro-
gramming. Chapter 6 covers typical cassette punch and load routines and
Chapter 7 describes more general loaders and a simple text editor.

In Module III (Chapters 8, 9, 10), the students are introduced to a high-
level programming language—PL/M. Chapter 8 describes PL/M and the
corresponding structured-programming concepts. Chapter 9 covers the con-
cepts involved in writing a two-pass assembler and thereby prepares the stu-
dent for the task of producing a small resident assembler on the microcom-
puter. The last chapter in this module, Chapter 10, describes other software
support packages that are typically found in a resident system and explores the
microcode support for the machine-language level of the machine.

Module IV (Chapters 11 and 12) contains a discussion of interrupt I/0
and some of the many application areas of microprocessors. Following a con-
sideration of interrupt and parallel 1/O support on each of the two systems,
case studies are made of particular applications.

While moving through these four modules, the student transforms her or
his own microcomputer from an initial naked piece of hardware into a func-
tioning small computer system containing a loader, a text editor, and a resi-
dent assembler. Moreover, the student has written the programs that support
this system.

The course presupposes a rather modest laboratory, which includes the
microcomputers themselves (at least one of which has an extended memory)
and a terminal. In addition, a support system centered around a computer
sufficiently large to handle the necessary software development packages and a
link between the support system and the microcomputers is needed. It should
be noted that the ACM curriculum 1978 specifications recommend a labora-
tory of just this sort for computer science departments.

Although it is possible to cover most of the material in a three-hour, one-
semester course, it may be desirable to omit some of the material in a given
situation. It is possible, for example, to consider only one of the two micro-
computers, or to provide the students with some of the programs (such as the
text editor) which they might otherwise write. Moreover, various sections of
the text (such as parts of Chapter 10 and much of Module IV) might be

Preface vii

regarded as optional material. An Instructor’s Manual, which includes solu-
tions to selected exercises and a description of a possible supporting micro-
computer laboratory, is available. In addition, supporting software packages
are available from the Computer Science Department, Southern Illinois Uni-
versity at Carbondale. These include the PL/M STAR Compiler and asso-
ciated cross assemblers for the M6800 and 18085, as well as linkers and simula-
tors for the two machines.

The authors wish to acknowledge Clovis Tondo, Debra May, Linda
Foran, and Jeff Marks for their assistance in the development of the software
support packages and David Alvin for his considerakble help in developing the
microcomputer laboratory and its support system. We are further indebted to
the CS 306 students who took the course on an ‘‘experimental’’ basis and pro-
vided many helpful comments. Finally, we wish to thank our typists, June
Blonde and Glenda Russell, who suffered through the several versions of the
manuscript.

The course was developed with support from the National Science
Foundation grant number SER77-02523.

Carbondale, Illinois K.J.D.
July, 1980 C.L.S.

MODULE I

Chapter 1
1.1
1.2
1.3
1.4
1.5

Chapter 2
2.1
2.2
2.3
2.4
2.5
2.6

Chapter 3
3.1
3.2
3.3
34
35
3.6
3.7

CONTENTS

WORKING WITH THE BASIC MACHINE

An Overview of Computer Organization
Computing systems in general

The basic hardware components
Instruction formats

Addressing modes

Maxis, minis, and micros

The Motorola M6800 Instruction Set

Chapter overview

The microprocessor unit

Accumulator and memory reference instructions
Index register and stack pointer instructions
Jump and branch instructions

Condition code register instructions

The Intel 8085 Instruction Set
Chapter overview

The microprocessor unit
Data transfer instructions
Arithmetic instructions
Logical instructions

Branch control instructions

Stack, input/output, and machine control instructions

14
20
24

27
27
27
31
41
44
49

51
51
51
54
58

63
65

X

Contents

Chapter 4
4.1
4.2
4.3

Chapter 5
5.1
5.2
5.3

MODULE II

Chapter 6
6.1
6.2

Chapter 7
7.1
7.2
7.3
7.4

MODULE III

Chapter 8
8.1
8.2
8.3

Chapter 9
9.1
9.2
9.3
9.4

Chapter 10
10.1
10.2
10.3

Programming with the M6800 and the 18085
Programming techniques

Comparison of the two instruction sets
Program development techniques

Introduction to Microcomputer Architecture
Basic circuits

Microprocessors and associated components
Hardware support for input/output functions

INTERFACING WITH OTHER SYSTEMS

Automating the Loading Process
Microcomputer development systems and systems programs
A typical cassette interface

System Interface Programs
Bootstrap and absolute loaders
Relocating loaders

Linkirig loaders

Text editors

BUILDING A RESIDENT SOFTWARE SYSTEM

High-Level Language Programming
The PL/M programming language
Structured programming and software engineering

High-level versus assembly-language versus conventional
machine-language programming

Assembly Language Support

The assembler function

Macro assemblers

Conditional assembly

Cross, resident, and self-assemblers

Advanced System Software Support
Compilers

Simulators and debuggers
Traversing the levels

69
69
91
93

97
97
102
108

121
121
122

137
137
140
143
149

153
153
180

190

195
195
212
222
225

227
227
241
247

MODULE IV

Chapter 11
11.1
11.2

Chapter 12
12.1
12.2
12.3

Q=mmES O »

MICROPROCESSOR APPLICATIONS
AND INTERRUPT 1/0

Microprocessor Interrupt Systems
Interrupt-driven I/0
An example using interrupt I/0

Applications and Future Directions

Utilizing microprocessors in dedicated systems
Interproceéssor communication

Future directions

Appendixes

ASCII Code

M6800 Instructions Listed Numerically by Opcode
18085 Instructions Listed Numerically by Opcode
Motorola M6800 and Assembler Conventions
Intel 8085 Assembler Conventions

PL/M STAR Syntax Specification

PL/M STAR Built-in Functions

Bibliography

Index

Contents

xi

253
253
263

267
267
270
274

277
281
285
289
299
309
317

321

325

CHAPTER ONE

AN OVERVIEW OF
COMPUTER ORGANIZATION

1.1 COMPUTING SYSTEMS IN GENERAL

In framing a definition of what constitutes a computing system, we tend to be
heavily biased by the types of interaction we have had with such a system. For
the most part, modern computing systems are viewed as mysterious machines
that are capable of performing wondrous tasks, such as computing space-
flight paths or predicting election results, and/or making disastrous mistakes,
such as refusing to acknowledge that you paid last month’s bill.

The mystique about the nature of computing systems has been reinforced
by the lack of physical contact that is permitted with the machine. This situa-
tion is common even within a computer-science curriculum. Although begin-
ning students in computer science are exposed to the process of programming
(giving instructions to) computing systems, this exposure tends to reinforce the
mystical illusion rather than dispel it. These students normally deal with a ma-
chine that seems to require meaningless commands and all too often returns
meaningless messages. It is rare that beginning students even get to see the ma-
chine, which is usually locked away in a secure room and attended by the high
priests of the field, i.e., computer operators, programmers, and technicians.

The objective of this text is to unravel the mysteries surrounding comput-
ers and thereby derive an accurate definition for a computing system. Our
premise is that the best way to accomplish this is to encourage close interaction
with these systems. For this reason our text uses microcomputer systems as
case studies. For the time being we define microcomputers as small, inexpen-
sive computers. These two attributes—i.e., small physical size and low
cost—make these systems ideal for our use.

One point that should be stressed is that, while we are using microcomput-
ers as case studies, we are really investigating computing system concepts that
are common to all computing systems, even the large expensive ones that are
locked away in secure rooms. Although microcomputers are currently being
sold in neighborhood electronics shops and used in computer games, they are

1

2 An Overview of Computer Organization 1.1

not toy systems. This fact is emphasized by the comparison figures shown in
Table 1.1. In this table we compare the IBM 7090 computer, a very popular
machine manufactured by International Business Machines in 1960, with a
typical microcomputer system based on the M6800 microprocessor develored
by Motorola in 1970. The figures in this table highlight the fact that, despite
the small cost of microcomputers, the computing power of these machines is
significant. The cycle time listed in the table is a measure of the amount of time
needed to transfer information in the computer. The cycle time for the M6800
is less than the cycle time for the IBM 7090, but the former has a smaller infor-
mation unit.

The fact that microprocessors are used in an ever increasing number of
applications, including automotive parts, point-of-sale terminals, and games,
is a result of the low cost and small size of these components. We should not
overlook the fact that they are also powerful computing machines. Since we
are stressing the power of microprocessors and emphasizing the fact that we’ll
be studying computing concepts that are relevant for all computers, an
obvious question is ‘““Why do some computing systems sell for over a million
dollars while others are marketed for under 300 dollars?’’ The distinction
between large machines (maxis), medium-sized machines (minis) and small
machines (micros) will be discussed in Sec. 1.5, after we have introduced
enough computer terminology to make the discussion meaningful.

Table 1.1
IBM 7090/M6800 Comparisons
IBM 7090 M6800
Cost $3,000,000.00 $3,000.00
Cycle time 2.18x10 S sec 1.0x 10 " sec
Memory 32768 units 65536 units
unit width: 36 unit width: 8

1.1.1 The Components of a Computing System

Computing systems consist of several components, not just the electronic cir-
cuits that are called the hardware components of the system. In a typical com-
puting system we’ll find a blend of hardware, software, and firmware com-
ponents. The term software is used to refer to a set of programs or instructions
that are executed by the hardware. Hardware can be viewed as a very inflexible
part of a computing system; i.e., the electronic components are fixed and can
be changed only with great difficulty. Software, on the other hand, is quite
flexible since it is relatively easy to change one or more instructions. In terms
of flexibility, firmware lies somewhere between hardware and software. Firm-

1.1 Computing Systems in General 3

ware is a program or set of instructions, but it is normally encoded in a
medium that makes it relatively difficult to change. The use of firmware is
advantageous for programs that are never (or seldom) altered since firmware
media are generally faster and less expensive than typical software media.

In studying computing systems, we must discuss hardware, software,
firmware, and the interaction between these components. When viewed as a
whole, computing systems are quite complex and seem to defy total compre-
hension. To overcome the complexity factor, we will investigate these systems
in terms of a set of levels, moving to a new level only when we completely
understand the preceding levels. The analysis of computing systems in terms of
levels has been described in Tanenbaum (1976). We briefly review this ap-
proach in the following paragraphs.

1.1.2 Levels of Computing Systems

While computing systems taken in totality are very complex, the basic com-
puter is actually a very simplistic device when viewed at its lowest level. At this
level computers are viewed as machines that can only execute (directly in the
hardware) instructions encoded in a language consisting entirely of 0’s and 1’s,
i.e., the computer’s machine language. Let us say that this language is at level
L1.

Even though we can write programs in L1, it soon becomes very tedious
and difficult. To overcome this problem, the computing system designer
usually develops a new set of instructions that are more convenient for humans
to use. These instructions form a new language, e.g., L2. Now the designer
must specify a way of running L2 programs on the original machine. There are
two ways of attacking this problem—transiation and interpretation.

In the case of translation, an L1 program called a translator is used to
replace each instruction of an L2 program by L1 instructions that perform the
same function. Thus the translator accepts an L2 program as input and out-
puts an equivalent L1 program, which may then be executed on the machine.

Interpretation involves writing an L1 program (an interpreter) that will
again accept L2 programs as input data. The interpreter decodes each L2
instruction and immediately executes an equivalent set of L1 instructions.
Note that an equivalent L1 program is not created, i.e., each L2 instruction is
decoded and directly executed. Thus two processes (interpretation and execu-
tion of the L2 program) are occurring simultaneously.

Translation and interpretation are methods of moving from one level (L2)
to another (L1). Ordinary users are unaware of level transversal; e.g.,
FORTRAN programmers might feel that they are using a FORTRAN machine,
just as the L2 and L1 programmers feel that they are using L2 and L1 ma-
chines, respectively. However, the L1 programmer is using a real machine
while the L2 and FORTRAN programmers are using virtual machines. The L1
machine is real because L1 programs are directly executed in the hardware. 1.2

4 An Overview of Computer Organization 1.1

is a virtual machine since L2 programs must be either translated or interpreted
to the L1 level before they are executed.

Early computers had only one level—the conventional machine language
(CML) level. Modern computing systems are organized in terms of several
levels. The notion of a two-level system was suggested by M. Wilkes in
England (Wilkes, 1951). This machine was designed to have a built-in (un-
changeable) interpreter, which would execute machine-language programs. In
this approach, machine-language instructions were simulated, by the inter-
preter, with ‘‘microinstructions.’”’” At present, the micro level is common on
most machines. The reader should be warned at this point not to confuse the
use of the term micro in this context with the use of micro in microcomputer or
microprocessor. The built-in unchangeable interpreter mentioned here is a
firmware component of the system, which is used to define the control com-
ponent of a computer. The instructions found in the interpreter were termed
microinstructions because basic CML-level instructions were defined in terms
of these lower-level instructions. In practice, the term microprogramming
refers to the programming of the control function of a system; it does not refer
to writing programs for microcomputers. A microcomputer may have a micro
level also; i.e., its control function may be defined by a set of microprograms.

In the 1950’s software components called assemblers and compilers were
developed, and they added additional levels to the system. An assembler is a
translator that supports an assembly language, i.c., a language that is very
close to the CML-level instructions, but it is encoded in terms of mnemonic
instructions and symbolic names. Compilers, which are also translators, sup-
port the so-called high-level languages (FORTRAN, PL/1, or PASCAL), which
contain constructs that are quite dissimilar from the CML level and are
designed to make programming much easier.

A final level was added in the 1960’s when major advances were made in
operating systems. Operating systems (OS) are software components that con-
trol the use of system resources and provide access to other software or hard-
ware functions.

Figure 1.1 shows the levels available on most modern computing systems,
together with the normal methods of level transversal. Note that two arrows
emanate from the OS level, one to the CML level and one to the MP level. This
is because the OS level actually consists of a mixture of OS-level and CML-
level instructions. The OS instructions require interpretation down to the CML
level, while the CML instructions can be passed directly to the MP level.

The five-level structure of Fig. 1.1 will be present in the computing sys-
tems we will examine in this text. In particular, we will develop a microcompu-
ter system in the context of these levels.

Within the context of the hardware, software, and firmware components
of a system, we should note that there are no rules that state at what level a
function should be implemented. In some machines, for example, a multiply
instruction is directly supported by the hardware while, in others, it must be

1.1 Computing Systems in General 5

High-Level
Level 5 Language-Level
(HL level)

Translation (compiler)

Assembly-Language
Level 4 Level
(AL level)

Translation (assembler)

Operating System
Level 3 Machine-Level
(OS level)

Partial Interpretation
(operating system)

Conventional Machine
Level 2 Language-Level
(CML level)

Interpretation (microprogram)

Microprogramming
Level 1 Level
(MP level)

Microprograms are directly
executed by the hardware

Fig. 1.1 Computing system levels.

simulated in the software. This is true of the more complex functions also. For
instance, while we defined translators as software components, this definition
is only generally, but not always, true. For example, on the SYMBOL-2R sys-
tem, the translator is a hardware component (Anderberg, Smith, 1973). Hard-
ware and software are functionally equivalent; i.e., any operation performed
by software can be built directly into the hardware, and any instruction exe-
cuted by the hardware can be simulated in the software. This observation
applies to firmware also. In this text we will refer to functions as existing in the
form in which they are typically implemented. The decision as to whether a
function should be implemented in hardware, software, or firmware is usually
dictated by economics rather than feasibility.

We begin our investigation of computer systems at the CML level.
Although not the lowest level in modern machines, this is the level described in
manufacturers’ ‘‘Principles of Operation’’ manuals, and it was historically the
lowest level.

6 An Overview of Computer Organization 1.2

1.2 THE BASIC HARDWARE COMPONENTS

A minimal computing-system configuration requires at least the following
hardware components: Central processor unit (CPU), Memory, and input/
output (I/0) interfaces. These might be arranged as shown in Fig. 1.2. The
buses serve as links between the various hardware components and are gener-
ally bidirectional. The number of lines in (or width of) these buses varies
depending on the particular bus and the system.

The CPU—often called the microprocessor (uP) in the case of micro-
computers—is the core of any computing system. It includes a control unit
(CU), an arithmetic logic unit (ALU), and various registers (Fig. 1.3).

Among the registers, we would typically expect to find the following:

1. Accumulators (one or more), which generally hold the results of the
various operations being performed on the data. These registers would
normally be of the same width (be composed of the same number of
bits) as the data bus.

2. A program counter (PC), which at any time contains the address of the
next instruction to be executed. This would normally be of the same
width as the address bus.

3. A condition code or flag register, which consists of various flags indi-
cating conditions such as arithmetic overflow or carry, a result ‘‘zero,”
etc.

Finally, we would expect to find other special-purpose registers that could
be used to facilitate the accessing of memory. Registers such as index registers
and stack pointers would fit into this category.

Memory 1/0 interfaces

Data bus

CPU

Fig. 1.2 Minimal computing system.

Address bus

Control bus

1.2 The Basic Hardware Components 7

CPU

Registers

ALU

Fig. 1.3 Central processing unit.

In the basic operation of the computer, the following sequence of steps is
taken:

1. The CPU fetches a machine-language instruction from the memory
location indicated by the PC.

2. The PC is then updated to point to the next instruction.
3. The fetched instruction is decoded and executed by the CU.
4. Go to step (1).

The ALU facilitates those instructions calling for arithmetic or logical
operations.

1.2.1 Number Systems

As we shall see later, a digital computer is constructed from two-state binary
devices that can be either on or off. We shall refer to these states as 1 and 0,
respectively. Such an individual binary device, or more precisely, the informa-
tion it contains, is referred to as a bit (BInary digiT). The registers and
memory units mentioned above might be regarded as groupings of these binary
devices. Generally however, access to registers would be somewhat easier and
faster than access to memory.

Since computers are constructed from binary devices, it is natural to
utilize the binary (base 2) number system for the internal representation of
numbers. Binary numbers involve only the two digits 0 and 1; and in the binary
representation of an integer, each digit is weighted according to its position.
Thus the value of the six-bit binary number bsb b3b,b, by is

bse25 + bye2* + bye23 4+ bye2% 4 bye2! + bye2°
Note that this is consistent with the usual interpretation of the digits com-

prising an integer. For example, the decimal (base 10) integer 324 is evaluated
as 3¢10% + 2+10' + 4+10°

