Interfacing to

‘Microprocessors
J. C.Cluley

INTERFACING TO
MICROPROCESSORS

J. C. Cluley

Senior Lecturer in Electronic and Electrical Engineering,
University of Birmingham

©1J. C. Cluley 1983

All rights reserved. No part of this publication may be reproduced
or transmitted, in any form or by any means, without permission.

First published 1983 by

THE MACMILLAN PRESS LTD
London and Basingstoke
Companies and representatives
throughout the world

Printed and bound in Great Britain
at The Pitman Press, Bath

ISBN 0 333 34061 2 (paper cover)

The paperback edition of this book is sold subject to the condition that it
shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of binding or cover
other than that in which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser.

Preface

The majority of the microprocessors now produced are installed as the controlling
element in larger, generally non-electronic systems. Examples of these applica-
tions are domestic products such as cookers and washing machines, cash registers,
weighing machines and much industrial process control and test equipment. The
user is usually not aware that a microprocessor is embedded in the equipment,
since it begins operations automatically when power is applied.

Although the microprocessor itself is produced in large quantities to a standard
design, the extremely wide range of applications is reflected in the many different
ways in which it must be interfaced to the outside world.

The design of these external circuits and their interactions with the micro-
processor are the main topics of this book. Although the principles of data
input and output with microprocessors are similar to those used with mini-
computers, the detailed arrangements differ substantially. In particular, in order
to afford the maximum flexibility in use, nearly all microprocessor input and
output packages are programmable.

In planning the book I have assumed that the reader has some understanding
of the way in which a microprocessor operates and how instructions are retrieved
from the program store and executed. This information is well presented in
Understanding Microprocessors by B. S. Walker (published by the Macmillan
Press, London and John Wiley, New York) and I have not attempted to dupli-
cate it. Although the book is mainly concerned with hardware and system
design, I have included short program segments to illustrate the way in which
interfaces can be controlled.

In chapter 4 I have included a brief survey of transducers. These are not
always mentioned in many courses as they are not regarded as electronic devices.
They are however essential features of many systems, and the availability of
cheap and reliable transducers is often the critical factor in deciding whether
a particular microprocessor application is economically justified.

I have given examples of the use of several of the more popular micro-
processors, rather than confining the book to only one model, so as to give
some indication of the variety of features and design philosophy available.
Readers who require more information on the components in any particular
family of microprocessors will need to consult the manufacturers’ design data.

X Preface

With the use of microprocessors now extending to a wide range of products,
processes and equipment, there is a corresponding need for engineers and scientists
in many disciplines to acquire an understanding of microprocessor applications
and interfacing. This material is also being incorporated into many courses at
universities and polytechnics.

I hope that this book will provide a satisfactory and comprehensive introduc-
tion to this developing and important subject.

J.C.CLULEY

Contents

Preface ix
1 Basic Microprocessor Architecture 1
1.1 Introduction 1
1.2 Components of a Microprocessor System 1
1.3 Bus Lines and Bus Signals 3
1.4 Signal Flow During Data Transfers 6
1.5 Input/Output Transfer Methods 7
1.6 Interrupts 9
1.7 Direct Memory Access 11
2 Principles of Data Transfer 13
2.1 Device Addressing 13
2.2 Memory-mapped Input/Output 15
2.3 Input/Output Package Design 17
2.4 Combined Interface Packages 18
2.5 Counter/Timer Packages 19
2.6 Serial Input/Output 19
3 Input/Output Packages 23
3.1 Parallel Input/Output Packages — the M6820 and M6821 23
3.2 Programming the M6821 26
3.3 Flag Testing 29
3.4 Interrupt Handling with the M6821 PIA 31
3.5 The Intel 8255 PPI 32
3.6 Programming the 8255 36
3.7 Serial Interfaces for the M6800 38
3.8 The Intel 8251A USART 42
39 M6852 Synchronous Serial Data Adapter (SSDA) 45
3.10 Counter/Timer Packages 45
3.11 DMA Controllers 47
3.12 Priority Interrupt Controllers 49

3.13 Other Input/Output Packages 53

vi

Contents

4 Transducers and Signal Conversion

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

Signal Transformations for Input and Output
Digital Inputs

Digital Transducers

Analogue Sensors

Temperature Measurement

Signal Conditioning

Non-linear Operations

Digital to Analogue Converters
Analogue to Digital Converters
Slew Rate Limitations

Tracking Converters

Digital Coding of Analogue Signals
ADC Interfacing

Other Types of A/D Converter
Protection from Interference
Output Circuits

Motor Drive Circuits

5 Single-chip Microprocessors

5.1
52
3:3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6

7.1
12
7.3

Applications of Single-chip Systems

Typical One-chip Devices — the Intel 8048 Family
The Intel 8021 and 8022

The Zilog Z8 Family

The Motorola MC6801

Practical Problems and Applications

Sensing Data from Mechanical Switches
Manual Input Devices

Input from Keyboards

Reverse Scanning

Driving Digital Displays

Waveform Generation

Microcomputer Buses

The Development of Standard Buses
The S—100 Bus
The IEEE—488 or IEC 625 Bus

54

54
54
56
60
62
63
66
69
71
75
78
79
79
82
82
85
86

88

88
88
92
92
94

96

96
98
101
103
107
111

115
115

115
120

74
7.5
7.6
7.7

Contents

The E78 Europa Bus
The IEEE—796 Bus
Other Bus Standards
Serial Data Standards

8 System Testing and Development

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

System Development
ROM Simulators

Board Testing

In-circuit Emulators
Logic State Analysers
Asynchronous Display
Graphical Displays
Signature Analysis
Other Fault-finding Aids

9 Interfacing to 16-Bit Microprocessors

9.1
9.2
9.3
94

16-Bit Bus Organisation
The Intel 8086 Family
The Motorola M68000
The Ziiog Z8000

Bibliography

Appendix A: Pin Connections of the 8080 Family
Appendix B: Pin Connections of the 8085 Family
Appendix C: Pin Connections of the 6800 Family
Appendix D: Pin Connections of the Z80 Family

Index

vii

122
122
123
125

128

128
129
129
130
131
132
133
133
136

137

137
137
138
140

142
146
148
150
152

154

T Basic Microprocessor
Architecture

1.1 Introduction

A microprocessor has been defined as ‘an integrated circuit which performs
the central processing function in a digital computer system’. The essential
requirement for successful manufacture is a high volume of production, so
that the very large cost of design and mask-making can be spread over typically
hundreds of thousands of devices.

The problem of the microprocessor user is to take this standard product and
tailor it to the particular requirements of his own environment and application.
The main aspects of this operation are the unique program of instructions
which determines the action of the microprocessor, and the way in which it is
attached or ‘interfaced’ to the system with which it operates.

In this book we are concerned mainly with the design and arrangement
of the interface, and to a lesser extent with programming. The program ex-
amples given show how data transfers can be effected, how the state of external
devices can be tested and how they can be controlled. Program design and strategy
will not be discussed in any detail.

1.2 Components of a Microprocessor System

A microprocessor alone is unable to perform any useful actions. In order to
work successfully it must be connected to other units, generally on a shared
or ‘party line’ basis, so as to provide all the functions of a complete computing
system. A typical arrangement is shown in figure 1.1, and comprises in addition
to the microprocessor the following items.

(a) Program store

This is a read-only device, which has been programmed during manufacture
(masked ROM), or by the user (fusible link PROM or erasable PROM). It is
supplied with an address, control and timing signals, and will then drive on to
the data lines the contents of the location addressed.

(b) Data store

This is writable storage (usually referred to as RAM) used for holding infor-
mation upon which the computer is operating. It has the same set of connections

2 Interfacing to Microprocessors

Clock
pulse
generator

Iy

Microprocessor

Start-up
circuit

A

Program

ROM store

Data

RAM store

Address
data and
control
bus

] »> Data and
Intekrface ——<¢ control
— package ——% signals

A

Figure 1.1 The components of a basic microprocessor system

as the program store but in addition needs control signals to order either a
read or a write operation.

(c) Peripheral interface packages

Some external devices can be connected directly to the microprocessor, but for
an output operation data storage is almost invariably required. In addition,
various status flags and timing signals may be required, and it is thus usually
much simpler to use the manufacturer’s input/output (I/O) interface package
than to construct an interface using a number of small-scale integrated circuits.
Most applications require parallel data transfers but serial data are needed for
feeding data over telephone lines or attaching VDUs and teleprinters. Interface
packages are available which incorporate all of the necessary logic for these
applications within a single package.

Basic Microprocessor Architecture 3

(d) Clock pulse supply

Microprocessors require a continuous train of pulses to synchronise internal
and external events, or for some versions two non-overlapping pulse trains.
These clock pulses were originally generated by a separate package, their
frequency being determined by a quartz resonator.

Later microprocessors included the clock pulse generator circuits, so that
the only external component required was the quartz crystal.

(e) Startup circuit

In order that the microprocessor shall set its internal registers in the proper
state when the power is first applied, it is necessary to earth the reset or restart
pin for some milliseconds before returning it to its normal +5 V level. This
action may be performed either by a trigger circuit which senses the 5 V supply,
or by a simple C—R circuit, both external to the microprocessor package.

1.3 Bus Lines and Bus Signals

The connections which link together the processor, the program and data stores
and the peripheral units are called a ‘bus’ and can conveniently be separated
into three groups, the data bus, the address bus and the control and timing
bus. The bus lines cannot use conventional logic packages because they are
required in some cases to operate in different directions at different times.

Thus for a ‘write’ operation data must flow along the data bus from a
processor register to a peripheral device or to the data store. In a ‘read’ operation
the direction of the data flow is reversed, and information from external sources
is read into a processor register. In order to allow this bidirectional operation,
devices which drive the bus are usually designed to have three output states,
logic 1 output (high), logic 0 output (low) and off. In the off condition the
circuit presents a high impedance to the bus, so allowing its potential to be
determined by some other device connected to the bus. This arrangement
is called ‘tri-state’ drive and is usually provided by two series transistors as shown
in figure 1.2(a).

An alternative arrangement sometimes used on lightly loaded lines is the
‘open-drain’ circuit of figure 1.2(b). Here the single transistor is cut off when
the device is not transmitting data, and is only turned on when transmitting
a logical 0. A single resistor in the range 2—10 k& is connected between the
bus line and +5 V to hold the bus at logic 1 level when no driver is energised.
This circuit has the disadvantage that its positive-going transition is rather slow,
being determined by the product of the resistor value and the total stray capaci-
tance of the bus. The tri-state circuit has a much faster transition since the
1pper transistor is fully conducting to signal a logic 1 and its resistance is typi-

4 Interfacing to Microprocessors

+5V
Output T1 T2 p—
1 On Off — T1
0 Off On —we

off off off MPut

¢—> Bus

T2

L,

.
o]

I
.

+5V
Output T1
1 Off R Pull-up resistor
0 On
Off Off
0—.._.'_> Bus
—_ c __]I_ Stray
e T1 _':— capacitance
Input —e |
|
AI &
(b) .

Figure 1.2 (a) Tri-state bus driver; (b) open-drain bus driver

cally only a few hundred ohms. Consequently all bus lines which are liable
to substantial capacitance loading and require bidirectional working (the data
and address buses particularly) are normally driven by tri-state circuits.

Unlike fast minicomputers, the bus lines are usually confined to one or two
printed circuit boards, are relatively quite short, and so do not need to be
treated as transmission lines or be properly terminated. This saves a great deal
of power and allows transistors with much lower current ratings to be used.

To indicate typical values, we note that the specification of the M6800
microprocessor puts an upper limit of 130 pF on the total capacitance loading
of the data bus lines.

Assuming a system with this capacitance and a pull-up resistor of 3.3 k2
the time constant for a positive-going transition with the open-drain driver
circuit of figure 1.2(b) is given by

Basic Microprocessor Architecture 5

T = CR
130 X 107*2 X 3300 s
0.43 us

The 10—90 per cent rise time is then

Tr= 22T
= 0.95 us

Clearly this is much too long if the microprocessor has a 1 MHz clock rate
and must thus handle pulses which are typically 0.5 us long. The arrangement
however is generally used for control lines which are active only on the negative-
going transition and have no critical timing on the positive-going (slower) tran-
sition. Typical of these is an interrupt request line which is connected only to
peripheral devices, not to storage packages, and so has less loading than the data
lines.

Note that in this case the important negative-going transition will be much
faster, because the resistive component of the time constant is almost entirely
the drain-source resistance of the driver transistor, which will be considerably
less than 3.3 k2.

If the calculation above is repeated for the tri-state circuit, using a typical
driver resistance value of 300 £2, the time constant is eleven times less and the
rise and fall times are both 86 ns. This neglects any switching time for the
transistor; if some allowance is included for this, the rise and fall times would
be in the region of 100 ns.

Taking this value, the mean transistor current during the rise or fall of bus
voltage is given by

_CV_100X 1072 X5
t 100X 107

= 5mA

For a 1 MHz pulse rate each transistor will conduct for only 100 ns in each
1 us, so giving an average current of only 0.5 mA. These peak and mean currents
are well within the capacity of the physically small transistor of the micro-
processor and its supporting packages. If however the bus lines are so long that
they need correct terminations at both ends, as in some minicomputers, the
driver current needed to pull the bus voltage down to 0 V may exceed 50 mA.

Microprocessor systems with a number of stcre packages and peripheral
devices attached to the lines may give a total bus capacitance which exceeds
the permitted figure. In this case the bus must be split inco sections using buffers
or bus-extenders, so that no section has more than the permitted loading.

6 Interfacing to Microprocessors

The type of device used depends upon the nature of the bus line. For unidirec-
tional lines such as the clock and interrupt lines and the address lines, a simple
unity-gain amplifier suffices, but for the data lines which have to transfer
information in both directions two amplifiers connected back-to-back as shown
in figure 1.3 are used. In order to prevent oscillation or latch-up, the amplifiers
are switched or gated, and arranged so that only one is operative at a time.
The control line is connected to the read/write bus, so that the outgoing (from
the microprocessor) amplifier operates for write, and the incoming amplifier
for read.

Control
: *) .
Preicassox Bus extension
< ?}—4—'
>
Read/write Control

Action R/W A B Data
line direction

Write Low On Off Out
Read High Off On In

Figure 1.3 Bidirectional bus driver

1.4 Signal Flow During Data Transfers

We first consider the action needed during the output or write instruction which
transmits a byte of data in parallel over the data lines. Since this will be present
on the bus for usually less than a microsecond, some form of storage is necess-
ary, as few if any devices can operate correctly with such a brief sample of data.
The interface needs to perform the following functions

(a) Detect that the processor is making a data transfer involving this par-
ticular interface. This normally requires the recognition of either an address
or a device number on the address lines.

(b) Detect that the processor is executing a write transfer. This involves
sensing either the read/write line or the write strobe line.

(c) Detect the correct moment when the data are present on the data bus
and available for storage. This involves sensing either a clock pulse or the write
strobe pulse.

Basic Microprocessor Architecture il

Generally the three signals resulting from (a), (b) and (c) are ANDed together
to provide a clock pulse for a set of D-type bistables. The D terminals are
permanently connected to the data lines, so that after the clock pulse the data
transferred will be stored and available at the Q output of the bistable. It will
remain until the next data transfer occurs.

To ensure that the output is in a known state when the power is first applied,
the clear terminals of the bistables may be connected to the reset or restart
line so that when power is applied to the system the device register is auto-
matically cleared.

Before a data transfer occurs it may be necessary to examine a status flag
in the interface to ensure that the device is ready to accept data. Usually a
complete byte will be read from a control and status register, and one bit of
this will be examined.

For a read operation no storage is generally provided. The functions required
are

(a) As for a write operation (address sensing).

(b) Detect that the processor is executing a read instruction, using the
read/write line or the read strobe.

(c) Detect when the processor requires the data to be gated on to the data
lines. This timing information is derived from a clock pulse or a read strobe.

Again the three signals from (a), (b) and (c) are ANDed together, this time
to provide a gating signal which turns on a tri-state driver which puts the data
on to the data lines.

Other signals may need gating into the combined load signal, depending
upon the processor, for example valid memory address (VMA) or input/output
request (IORQ).

These input and output logic circuits can be assembled from small-scale
integrated circuits but it is generally simpler to use the manufacturer’s parallel
I/O package which includes storage for output transfers and data bus drivers,
in addition to control registers. These will be described in more detail in chapter
3 where the characteristics of some current I/O packages are discussed.

1.5 Input/Output Transfer Methods

Having considered the principles governing the logic of input and output
operations, we next examine the program instructions involved, and the
processor actions which take place. We can distinguish three different arrange-
ments, generally called program-controlled transfers, interrupt driven transfers
and direct memory access (DMA) or autonomous transfer.

Program-controlled transfers are the simplest from both the hardware and
software aspects. They occur when the program executes an I/O instruction,
consequently the instant of transfer is decided by the program alone. Since

8 Interfacing to Microprocessors

this is not synchronised with the activities of the peripheral device there may
be a conflict if the processor, for example, outputs data when the device is not
ready to accept them. The data would then be lost.

In order to prevent this, a bistable or ‘flag’ is incorporated into the interface
package, which can be set by the device and read by the processor. If we assume
that the device sets the flag to logic 1 when it is ready for data, the program is
arranged to test the flag, and if it is not set, to continue testing it. When the
device sets the flag the program will branch to an output instruction which
transfers the data. For convenience the data transfer is usually arranged to
clear the flag ready for the next transaction. The loop of instructions which
precedes the transfer is generally called a ‘waiting loop’ and the sequence is of
the form

—> READ CONTROL REGISTER

TEST FLAG BIT

—— BRANCH BACK IF NOT SET
OUTPUT DATA TO DEVICE

This is sometimes called ‘wait and go’ operation, and it allows the program
execution to be delayed until the device is ready. However, it will not allow
program execution to be accelerated if the device is ready before the I/O transfer
instruction is reached.

Difficulties may arise if several devices are attached to the processor, since
a device which is not ready will hold up the program and prevent any other
device from being serviced.

An alternative program strategy to that given above is to test each device
and, if it is not ready, branch to test the next device. Each device is tested in
turn and only when a device is found which is ready for data transfer does the
program branch to effect the transfer. The procedure is called ‘polling’ and
requires the processor to remain in a loop; this may include some other
processor action if time permits. The essential requirement is that even in the
worst case, when every device is serviced, each one is polled often enough to
input or output all the data required, without missing any. Generally the
maximum data rate for each device is known, and the critical time is the time
between data transfers required by the fastest device. The longest time to
execute a loop of the program must be somewhat less than this. For example
the maximum data rate for a teleprinter is ten characters per second. Thus any
processor which has a teleprinter attached to a parallel data port must poll the
port at intervals of less than one-tenth of a second to determine whether a
character has been received by the port.

Basic Microprocessor Architecture 9

The basic structure of the polling routine is

—> START: READ CONTROL REGISTER 1
TEST FLAG 1 BIT
BRANCH IF NOT SET TO NEXT TEST
SERVICE DEVICE 1
READ CONTROL REGISTER 2
TEST FLAG 2 BIT
etc.
READ CONTROL REGISTER N

TEST FLAG N BIT

BRANCH IF NOT SET TO START

SERVICE DEVICE N

BRANCH TO START

The instruction ‘SERVICE DEVICE I’ is usually a JUMP TO SUBROUTINE
instruction, so that the program after completing the subroutine will return
to test the flag connection to the device next on the list.

1.6 Interrupts

Although polling is a satisfactory process for a set of attached devices with
roughly similar data rates, it cannot be used with fast devices if many other
interfaces are also active. In such a case the fast devices need rapid service
and there is no time to test all the other devices first. The solution is to use a
program interrupt.

This means that the device requiring attention can cause the processor to
leave the program that it is currently executing, and transfer to the device
service routine. At the end of the routine the processor must resume its
execution of the previous program.

