MODELING AND SIMULATION ON
MICROCOMPUTERS, 1988

Edited by

Joe Hilber

scs! :
L1 THE SOCIETY FOR COMPUTER SIMULATION INTERNATIONAL

IIIIIIIIIIII

MODELING AND SIMULATION ON
MICROCOMPUTERS, 1988

Proceedings of the SCS Multiconference on
Modeling and Simulation on Microcomputers
3-5 February 1988
San Diego, California

Edited by
Joe Hilber
AT&T

iy |
[SCS)

A Society for Computer Simulation International (Simulation Councils, Inc.) publication
San Diego, California

Rosemary A. Whiteside, Managing Editor

© 1988
(The Society for Computer Simulation International)
P.O. Box 17900
San Diego, California 92117

ISBN 0-911801-26-x

PRINTED IN THE UNITED STATES OF AMERICA

MODELING AND SIMULATION ON
MICROCOMPUTERS, 1988

Preface

In preparing for the seventh annual Modeling and Simulation on Microcomputers Con-
ference, | sense a changing attitude about Personal Computers and simulation. In the
early years of the microcomputer revolution it seemed remarkable that significant
simulation work could be undertaken with the computing power on ones desk. In the
ensuing years our Proceedings have documented the rapidly evolving PC computing
power, both hardware and software. Most of us now have on our desk more computing
power than most university computer departments of a generation ago!

THE UBIQUITOUS MICRO

Many authors now classify their work first by the process being modeled (e.g.,
Transportation, Space Systems, Biomedical), the technique used (e.g., Al, Discrete, Con-
tinuous), or the application being made (e.g., Training, Robotics). and only incidentally
that it was done on a microcomputer. The microcomputer has truly become ubiquitous.

Another indicator of this reality is that many your professionals, technicians, and
managers entering the work force from our colleges and universities view and use
microcomputers as a natural tool in their work. A growing library of “user-friendly” soft-
ware make the generation of models an activity of accountants, stock brokers,
marketeers, and engineers rather than solely simulation specialists.

The annual “Catalog of Simulation Software” published in the October issues of SIMULA-
TION lists over 150 software packages. Almost two thirds (63%) of these are implemen-
table on commonly available microcomputer hardware and operating systems.

WHERE THE MICRO IS THE ANSWER

On the other hand there are applications where simulation on microcomputers will
continue to be remarkably well suited, potentially large markets exist and the expertise
of simulation specialists is needed. In applications where portability is a necessity, low
cost is a requirement, small size dictated, or speed of implementation mandatory, the
microcomputer is the answer. Perhaps the future of this conference will be to highlight
those areas of simulation and modeling for which the microcomputer is uniquely suited.

NETWORKING MICROS AND MAINLINE

An exciting aspect of current developments in microcomputers is the advent of per-
sonal workstations and the software to link them to massive sources of public and pro-
prietary data. While this networking of Personal and Mainline computer power has been
widely discussed, demonstrated, and even implemented in large businesses, it is only
recently that IBM, AT&T, Apple, and others have begun to provide hardware and soft-
ware products at prices that make them affordable for small businesses, professionals,
families, and schools.

1988 MODELING AND SIMULATION ON MICROCOMPUTERS

This years papers demonstrate that microcomputers are being applied to an exciting
range of simulations. The low cost of the personal computers makes computer simula-
tion a tool for students and individuals that normally do not have access to mainline
computing power. Combining portability, low cost and the ability of network micros
with the institution’s main processing center has captured the best of both worlds.
Animation and graphics on microcomputers continue to intrique us and three papers on
the problems and opportunities in this area are included in this year's Proceedings.

THE FUTURE

One effect of reading, presenting, and discussing technical papers such as those
published here is to stimulate you to become active and creative in the use of
microcomputers for simulation. | urge you to share your progress at future conferences.
In particular, research on and applications of modeling and simulation that make use of
the special characteristics of microcomputers (portability, low cost, etc.) will be of great
interest to future conferences.

Joseph E. Hilber, Editor
AT&T =

vii

Simulation Languages and Tools

CONTENTS

Page Authors
Preface vii Joseph E. Hilber
Simulation Languages and Tools
PASION: The language and its environment S. Raczynski
LYSIS: An interactive software system for non-linear modeling 6 V. Z. Marmarelis
and simulation N. Herman
A comparison of various compilers on microcomputers revisited 1 M. A. Brebner
A microcomputer program for Linear Systems Modeling and 15 R. Wade Allen
Analysis (LSMP) Theodore J. Rosenthal
Raymond E. Magdaleno
Support for concurrent simulation on microcomputers 20 James Calhoun
Lieh-San Lin
Application of portable microcomputers in simulations for 24 R.T. Newkirk
emergency evaluation planning and response C. Banz
A microcomputer animation method for the simulation of 28 Sen Der Huang
queuing models Thomas A. Barta
Computer animation in discrete event simulation modeling: A 34 M. Eric Johnson
healthy or hazardous addition to the modeler's toolbox?
A realistic model of refraction for computer graphics 37 F. Kenton Musgrave
Lewis E. Hitchner
James L. Murphy
On the non-linear modelling of an ill-defined system through 44 M.A.S. Abo Elela
microcomputer graphics G.C. Vansteenkiste
Simulation of minimum sample sizes for sampling procedures 50 Julius Goodman
based on the maximum likelihood method
Simulation of Human and Human-Machine Systems
Scaling physiological pharmacokinetic models by physiological 55 R.C. Ward
time C.C. Travis
Simulating functions and user-computer interaction of new 60 William R. Feeney
software Gail F. Corbitt
Simulating labor-management cooperation in GPSS/PC 67 Jay Weinroth
Terry Allen Obrock
Determining the control frequency by simulation 71 Chuk Yau
Simulation and statistics using personal portable microcomputers 76 R.T. Newkirk

CONTENTS (coninuea

Page Authors

Simulation of Physical Systems
An application of simulation to decision-making in educational 83 Greer R. Lavery
administration
Desktop simulation of automotive drivetrains 86 Philip E. Nimmo
Flight simulator dynamics 92 Harry W. Townes

Larry Hayashigawa
Development of a sea-wave force simulation model for a real 95 Joesph E. Whalen
time trainer Elizabeth J. Becker
Simulation of the non-Gaussian sea clutter by time series analysis 101 Fang Zaigen

Hwang Xiaomei
Integrated reliability, availability, and logistics suppdrt simulation 105 Kurt M. Gutzmann
modeling Mark Stokrp
Uncertainty propagation techniques on microcomputers 113 Julius Goodman
A microcomputer model for the Laguna Verde nuclear power 116 Carlos G. Lorencez
station Jaime Morales
Simulation of risk of inhabitability of the nuclear power plant 121 Julius Goodman
control room due to the toxic chemical accident Hengameh Ardalan
Simulation of Microcomputer Hardware and Software
Microcomputer simulation of signal delays on GaAs-based VHSIC 127 Ashok K. Goel
Microcomputer simulation of single-level high-density VLSI 132 Ashok K. Goel
interconnection capacitances Cheng R. Li
Common disk management in concurrent multiple operating 138 C.K. Shieh
system environments J.S. Wu

L. Harn

L.M. Tseng
Author Index 145

vi

Simulation Languages and Tools

©1988 by The Society for Computer
Simulation
ISBN 0-911801-26-x

PASION: The language and its environment

S. RACZYNSKI
ESCUELA DE INGENIERIA
UNIVERSIDAD PANAMERICANA
AUGUSTO RODIN 4Y¥, 03910 MEXICO,D.F.

ABSTRACT

PASION is a PASCAL-related simulation language with
a process/event structure. A PASION program consists
of a sequence of process declarations. At run-time
the program generates objects that represent processes
of the simulated system. PASION offers some features
of the object-oriented languages such as inheritance
and generic processes. The language environment sup-
ports graphics, interactive simulation, queue stati--

stics and other additional simulation tools.

INTRODUCTION

The language PASION (This stands for Pascal Simula-
tion) was created rather with didactic aims, for the
simulationists who already know and use Pascal. The
language is an extension of Pascal characterized by

the following features.

1. Almost all Pascal structures can be used in the
source program. Arithmetics, predefined and user-de-
fined types, input/output, variables definitions, re-
cord and file handling, functions and procedures are

the same as in Pascal.

2. The extension consists in relating the program

to model descriptive variables (including the state
variables), and the model time. This is done by -
specifying the simulation model as a set of objects
of "process" types, and events. The language supports
the simulation by creating objects, controlling their
activities and the model time through the correspond-

ing event scheduling mechanism.

An introduction to PASION can be found [1]. Let
us note that PASION is a simulation language and not a
package. Consequently, some of the features which offer
typical simulation packages (graphics, interactive si-
mulation etc.), don't belong to the language but rather
to its environment, i.e. the library of predefined -

processes and procedures.

PROCESS/EVENT STRUCTURE OF THE MODEL

PASION suggests certain structure to be imposed on
the simulation model. First of all, we have to de-
scribe the model as a set of components, descriptive
variables and interaction rules. This approach, de-
scribed excellently by Zeigler [2], provides certain
model structure which can be coded in PASION easily.
The components of the model are dynamic objects cre-
ated in the operational memory due to the correspond-
ing process declarations. The descriptive variables
of the components are declared as process attributes,
which can store the state of the process. The model
activities (interaction rules) are described as events

inside process declarations.

The general program structure is as follows:

PROGRAM identl;

global declarations

PROCESS ident2;

ATR attribute specifications

EVENT ident3;
event body ... ENDEV;

EVENT identé4;
event body ... ENDEV;

PROCESSS ident5;
ATR....

START
main program

$

Where ident 1,2,... are identifiers. Each PROCESS
declaration defines a process type with its attributes
and events. At the run time, objects are created due to
the PROCESS declarations and run in the quasi-parallel
mode, executing their events. The simulation is initi

ated in the main program.

Let us compare PASION with two well known simula--

lation tools, namely GPSS and SIMULA. The events of
PASION are similar to the blocks of GPSS, while the
processes correspond to the GPSS transactions. The
difference lies in the fact that the PASION events are
sequences of operations coded by the programmer and
the GPSS blocks are provided by the package. Compared
with Simula, PASION is rather simple, although the -
Process Class of Simula is similar to the Process de-
claration of PASION. The difference is that SIMULA -
activates and desactivates processes and PASION con-
trols the events. In other words, --
any PASION object (of a process type) can be activated,
suspended, reactivated, etc., by activating its events.
An event, once invoked, can not be interrupted. As
for the strategy of event execution, it is an event
scheduling algorithm, with some elements of process
interaction and the 'three-phase approach" (see [3],

[41,(5])-

PASION has some of the properties of object-orient
ed languages, though it is not strictly object-orient-
ed. Let us recall that a language to be object-ori-
ented must support information hiding, data abstrac-
tion, dynamic binding and inheritance. Only two of
these features are implemented in PASION, namely in-
formation hiding and inheritance. Information hiding
consists in the fact that the attributes of an object
are not directly visible from outside of the object.
The inheritance refers to process declarations [6] and
permits to agregate new properties (new attributes and
events) to existing processes. Thus, certain processes
share the same code, prepared earlier. Let us note
that most of the recently used simulation packages and
languages lack this feature which undoubtedly will be

indispensable in the future simulation software.

PROCESS HIERARCHY AND INHERITANCE

While constructing complex models it is convenient
to add new properties to existing processes without
reediting the whole program. This feature is well -
known as class hierarchy (e.g. in SIMULA) or inheri-
tance in object-oriented languages [6], [7], [8]. It
should be noted that most of the commonly used simula-
tion languages lack this facility. The inheritance
in PASION can be applied by using prefixed process de-
clarations. For example, if PA is the name of an -
existing process and we wish to create a new one, say
PB, having all the properties of the process PA (this
means all its attributes and events), we simply use

the name PA/PB in the heading of the declaracion of

PB. The complete heading may be, for example
PROCESS PA/PB,25;

where 25 is the maximal number of objects of type PB

which can exist simultaneously. The translator looks
for the "parent" process PA (it can reside in the
same source file, or in a separate library file) and
inserts all the attributes and events of PA to the de

clarations of PB.

In [1] an example is given, being a model of two
populations of bacteria (of type BACTA and BACTB). -
The BACTB bacteria can move, divide, die and eat --
those of type BACTB. Using inheritance, the declara-
tion of BACTA can be prefixed with BACTB, supposing
that BACTB was declared earlier. Thus, BACTA inherits
from BACTB the ability to move, divide and die and the
declaration of BACTB includes only one event '"eat".

This makes the program much concise.

Inheritance is one of the features of PASION which
make it possible to develop application-oriented li-

braries of "parent" processes.

PREDEFINED PROCESSES

There are few programming languages which can be
used without an appropiate support environment. Ac-
tual version of PASION is equipped with a minimal -
PASION Programming Environment (MPPE) which consists
of a library of predefined processes and auxiliary
PASCAL procedures. It supports such features as in-
teractive simulation mode, graphics, queue statistics
etc. The core of MPPE is the library of predefined —-
processes. These are generic program units which -

generate PASION processes.

Predefined processes are written in PASION extended
by a simple "meta-language'" which permits a process
to have formal parameters. the user invokes a prede-
fined process by its name and specifies the actual pa-
rameters which are passed by name, before the program
is translated to PASCAL. The user can prepare his own
predefined processes and add them to the library. A
formal parameter by be a constant, a variable name,
a type, a procedure or

PASCAL reserved word.

process name etc., even a
The call has the following -

syntax

—> PROCESS——> pname—> LIKE —> ppname —>
—> (> actual parameters—>),—> pnumber—> ;

The reserved word LIKE identifies the call, 'ppname 2

must be the name of an existing predefined process.
This process is read from the library, preprocessed,

and inserted into the resulting code as a new process
called "pname'". The "pnumber" is the maximal number
of objects of type "pname" which can be created.

Consider for example, the following call:
PROCESS X1 LIKE INTERP(A,B,,,,

C,D,,, 0.1),1;

The process INTERP is read from the MPPE and the
corresponding declaration is generated in tue source
program. The generated process is named X1, and the

first, the second, the 5th, the 6-th and the 10-th -
formal parameters of INTERP are replaced by "A", "B",

"c", "D" and "0.1" respectively.

The process INTERP is one of the processes of MPPE.
It controls the interactive simulation mode and gene-

rates graphic output. The first five parameters are 8

the names of variables to be plotted simultanously -
with the simulation. The next 5 parameters are the
names of variables which can be redefined at the run
time. The user can interrupt the simulation, change
the values of some of these variables and reactivate
the program.

by INTERP.

Fig. 1 shows a typical screen generated
The screen is divided into three windows.
The graphic window is marked with I. Here the plots
of the variables appear. Window II is reserved for
the changes. 1t is active when the user interrupts
the simulation and specifies the changes. Window III
is the user window. Here appears any output specified

by the user in the source program.

CONCLUSIONS

PASION system, considered as the language, its ——
translator and its environment provides all the basic
simulation tools. The system is open and can be ex-
tended using both parent and predefined processes. -
PASION is completely hardware-independent, because all

the translator does is preprocessing.

The resulting PASCAL code can be compiled on any

system. Actually it is implemented on the IBM PC.

REFERENCES

1. RACZYNSKI, S.;
language for small systems', SIMULATION 46(6), 1986.

"PASION - Pascal-related simulation

Zeigler, B.P.; "Theory of modelling and similation"

John Wiley & Sons, 1976.

Hooper, J.W.; "Strategy-related characteristics
of discrete-event languages and models", SIMULA-

TION 46(4), 1986.

Hooper, J.W.; "Activity scanning and the three-
phase approach", SIMULATION 47(5), 1986.

0'Keefe, R.M.; "The three-phase approach: A com-
ment on '"strategy-related characteristics of dis-
crete-event languages and models', SIMULATION
47(5), 1986.

Pascoe, G.A.; "Elements of object-oriented program

ming", BYTE 11(8), 1986.

"A taste of -
1986.

Kaehler, T.
Smalltalk", W.W. Norton & Co., New York,

and Patterson, D.;

Schmucker, K, Y.; "Object-oriented Languages for
the Macintosh'", BYTE 11(8), 1986.

TINE: @200
=§ : .m::u
— . 2 4

= 1 4
| Name of var, to change:
==L
Al -) 5.5

.8 Linea uno; 28 Linea dos:
i inea uno: ﬁ inea dos: —
i inea uno inea dos: 1|
= Linea uno: 23 inea dos:
Linea uno: 21 nea u0s:

Modeling and Simulation on
Microcomputers 1988

©1988 by The Society for Computer
Simulation

ISBN 0-911801-26-x

LYSIS: An interactive software system for non-linear modeling and
simulation

V.Z. Marmarelis and N. Herman
Biomedical Simulations Resource
University of Southern California
Los Angeles, California 90089-1451

~N

ABSTRACT

To facilitate the broader use of "black box"
modeling and simulation methods among biomedical
investigators, an interactive software package--named
LYSIS--is being developed by the Biomedical
Simulations Resource at the University of Southern
California. LYSIS allows the processing of
time-series data to obtain linear and nonlinear
dynamic "black box" models of physiological systems.
It also allows the simulation of these models in
computer studies of physiological function. The
nonlinear modeling and simuiation methods are placed
in the framework of Wiener's theory for nonlinear
systems.

INTRODUCTION

There has been a rising trend in recognizing
the importance of mathematical modeling and computer
simulation of physiological function in the Tlast
twenty years. Mathematical models of physiological
system organs and their components have been
gradually accepted as the best way of summarizing
our quantitative knowledge about physiological
function, acquired through experimental and clinical
observations. Computer simulation of these models
allows the study of functional characteristics
of the corresponding physiological systems without
the burdens or the costs of actual experimentation
and prolonged observation. The success of this
scientific/engineering endeavor hinges critically
upon the validity and effectiveness of the employed
modeling and simulation methodologies. The results
to date have vindicated the vision of the pioneering
systems physiologists as to the efficacy of this
approach in advancing basic scientific knowledge
and improving clinical practice. A Tlot remains
to be done however, and the prospects of this
ambitious undertaking are as exciting as the
challenges are formidable.

The problem of physiological system modeling
is often placed in a "black box" context, whereby
the complexity of the system internal workings
prevents the development of realistic mathematical
models (typically 1in the form of differential
equations) from physical or chemical principles.
In this context, we seek to obtain "empirical"
mathematical models, on the basis of experimental
input-output data, that represent the input-output
causal relationship with sufficient accuracy. It
is hoped that these empirical models will reveal
systemic functional properties of importance in
understanding the underpinnings of physiological
function, and allow the effective analysis of
physiological system function under a variety of
experimental or natural conditions. This task
is further complicated by the presence of noise
contaminating the experimental data, that calls
for modeling methodologies effective in a stochastic

framework. Most of the modeling efforts in this
area have been limited thus far to the linear case,
when system dynamics are involved. However,
nonlinearities abound in physiology (especially
in neurophysiology) and effective methodologies
for nonlinear modeling and simulation have been
slow to develop and be adopted by physiologists,
owing to the complexity associated with the study
of nonlinear dynamics. The occasional presence
of nonstationarities is an additional complicating
factor that deserves proper attention if meaningful
results are to be obtained. Finally, 1limitations
posed by experimental conditions wusually make it
imperative that time-efficient procedures be used
in collecting the necessary experimental data.

To address this problem, methodologies based
on MWiener's theory of nonlinear systems (Wiener,
1958) have been gradually adopted by pioneering
systems physiologists, that offer promise in tackling
a class of these formidable problems. Vision
physiologists were the first to attempt this approach
and other neurophysiologists (primarily in the
auditory, vestibular and neuromuscular area) have
been gradually attracted to this method, due to
the nonlinear "black box" nature of their systems.
In the process, much has been learned about the
intricacies of this approach and refined variants
have been developecd--for a review of the basic
methodology and its initial applications to
physiological systems see Marmarelis and Marmarelis
(1978). Applications of this method have been
increasing in recent years. Some recent developments
are included in a volume edited by Marmarelis (1987).

In spite of the increasing activity around
this approach, its broader use has been impeded
by lack of readily available software that allows
the employment of the method by the non-expert.
To address this need and facilitate the broader
use of this method, we, at the Biomedical Simulations
Resource at USC, have developed a user-friendly
interactive software package named LYSIS, that
allows MWiener nonlinear analysis of experimental
data and related simulations studies. In the
following section we summarize the computational
requirements of this approach, and in the next
section, we outline the basic structure and
capabilities of LYSIS.

NONLINEAR WIENER MODELING

Wiener's theory is based on functional
expansions when Gaussian white noise (GWN) is used
as a test input. Wiener's critical contribution
is in suggesting a GWN is an effective test input
for identifying nonlinear systems of a very broad
class and proposing relatively simple mathematical
procedures for the estimation of the unknown system
descriptors (kernels) from input-output data.

The input-output relation of a causal system
can be seen as a mapping of the input past (and
present) values onto the present value of the
output. In this sense, the use of a mathematical
functional (denoting this mapping) is appropriate:

y(t) = Flz(t'),¢' <) (1)

where x is the input, y the output and F the
functional representing the black-box system.
The modeling task thus becomes one of obtaining
an explicit mathematical description of the system
functional F.

In the case of linear time-invariant systems,
this functional is represented by the convolution
integral:

oo
y(t :/ h(r)z(t — r)dr
()) ((2)
where h(1) - the impulse response function or
kernel - 1is the sole descriptor of the system.

The system identification task reduces, in this
case, to obtaining an estimate of h(t) - or its
Fourier transform H(jw) - from input-output data.
In the case of nonlinear time-invariant systems,
a functional expansion of the system functional
F can be considered. If the system functional
F is analytic, then a Volterra series expansion
exists of the form:

y(t) = ZOA -ui/:okn(rl,...,r,.)z(t—rl)...z(t-—r,.)dr,...dr,,

(3)
provided the series converges.

The multiple convolution integrals of the
Volterra series involve high-order kernel functions
{kp(tys...>tn)} which constitute the descriptorsof
the system nonlinear dynamics. Consequently, the
system identification task is to obtain estimates
of these kernels from input-output data. These
kernel functions are symmetric with respect to
their arguments, i.e., attain the same value for

any permutation of given (t; ,...,tp) values. In

general, the Volterra kernels of a system cannot
be directly determined from input-output data
unless the Volterra expansion is of finite order.

The inability to estimate the Volterra kernels
in the general case of an infinite series has
prompted the use of GWN test inputs and the Wiener
approach to kernel estimation. Wiener suggested
the orthogonalization of the Volterra series when
a GWN test input is used. The functional terms
of the Wiener series are constructed on the basis
of a Gramm-Schmidt orthogonalization procedure
requiring that the covariance between any two
Wiener functionals be zero. The resulting Wiener
series expansion takes the form:

oo [n/2]

where [n/2] is the integer part of n/2 and P
is the power level of the GWN input. The set of
Wiener kernels {hp} is, in general, different from
the set of Volterra kernels {kp}. Specific relations
however exist between the two sets of kernels
(Marmarelis and Marmarelis, 1978).

The orthogonality of the Wiener series allows
the estimation of Wiener kernels from input-output
data in the general case. Lee and Schetzen (1965)
proposed a simple technique for the estimation
of the Wiener kernels of a system based on
high-order input-output crosscorrelations:

"W ;!;—ME[y(t):(t O

(5)
(for 7 # 13)

For the evaluation of the kernel at the diagonal
points the m-th order response residual must be
used in the crosscorrelation. The simplicity of
the crosscorrelation technique led to its adoption
by many investigators in modeling studies of
nonlinear systems in the area of physiological
systems.

A variety of important practical issues had to
be explored in actual applications of the
crosscorrelation technique. To name but a few:
the generation of appropriate quasi-white test
signals (since ideal GWN is not physically
realizable); the choice of input bandwidth; the
accuracy of the obtained kernel estimates as a
function of input bandwidth and record Tlength;
the effect of extraneous noise and experimental
imperfections, etc. An extensive study of these
practical considerations can be found in Marmarelis
& Marmarelis (1978).

The greatest obstacle in the broader use
of the crosscorrelation technique has been the
heavy computational burden associated with the
estimation of high-order kernels. Obviously, the
amount of required computations increases
geometrically with the order of estimated kernel.
This prevents the estimation of kernels above
a certain order, depending of course on one's
computing facilities. Typically, kernel estimation
has been Tlimited to second order, with a few
attempts for third-order kernel estimation but
not further. An additional practical limitation
is imposed by the fact that kernel functions of
more than three dimensions are difficult to inspect
or interpret meaningfully. As a result, successful
application of the «crosscorrelation technique
has been Timited to weakly nonlinear systems (second
or third order) to date. In an effort to reduce
the computational burden, non-Gaussian (binary,
ternary, etc.) quasi-white random inputs and inputs
based on pseudorandom m-sequences have been used
as well as deterministic inputs (e.g. sums of
sinusoids of incommensurate frequencies), all
of them leading to some reduction of computational

(-1)™n'P™ o o9
v =) (n—2m)!m12"‘/o /o Baf s o o B M - cx s o) (4)

n=0m=0

z(t—711)...2(t — Taogm)dry...dTn_gmdAy .. dAy,

effort but failing to provide the breakthrough
required for the practical identification of
strongly nonlinear systems.

In closing this section, we note that the
Wiener approach has been extended to the case
of nonlinear systems with multiple inputs and
multiple outputs. This extension has led to a
generalization for modeling of nonlinear systems
with spatio-temporal inputs that has found
interesting applications to the visual system.
Finally, an extension of the Wiener approach to
systems with spike inputs and/or outputs,
encountered in neurophysiology, has been made,
where the GWN test input is replaced by a Poisson
process of impulses.

LYSIS

As mentioned in the Introduction, one practical
obstacle in the broader use of the Wiener approach
has been the lack of readily available and easy
to use software for this purpose. The development
of LYSIS aims at redressing this problem.

LYSIS (the Greek word for "solution") is
an interactive software package that can be used
for linear and nonlinear modeling, simulation
and time-series analysis. Version I of LYSIS is
currently available and incorporates some modeling
and simulation methodologies for nonlinear "black
box" systems appropriate for studies of
physiological function.

LYSIS is written in FORTRAN-77 and runs on
the VAX class of computers with VMS operating
system. [t is structured in modular, individually-
executable interactive programs performing specific
high-level tasks. Particular attention was paid
to making the dialogue simple and efficient, while
achieving the maximum range of executable tasks.
Use of LYSIS does not require knowledge of computer
programming but it does vrequire understanding
of the basic principles and theories of signal
processing and system modeling.

The datasets in LYSIS are one-dimensional
or two-dimensional evenly-sampled data arrays
with fixed format. Data analysis can be done either
in the time or the frequency domains. The results
can be displayed in two or three dimensions, through
flexible interactive graphics programs. Synthesis
results (e.g., model predictions) can be obtained
by wuse of the appropriate programs. Computer
generated (using LYSIS programs) and experimental
data (externally provided) can be used for analysis.

In the Tlatter case the experimental datasets must

be converted to LYSIS format.

The first version of LYSIS is comprised of
16 programs described below. These form the basic
set that can be used for the most fundamental
tasks in linear and nonlinear time-series analysis
and system modeling and simulation. It is also
hoped that they will provide a common computational
framework for investigators in this area of
research, facilitating communication and
interaction. As mentioned above, Version I is
only the beginning in the LYSIS development and
many programs must be added before we have a
reasonably complete package.

LYSIS is developed by the Biomedical
Simulations Resource at the University of Southern
California under Grant RRO1861 from the Biomedical

Research Technology Program of the Division of
Research

of Health.
by Ms.

Resources of the National Institutes

The programs of Version I are written

Nava Herman (except for PLOT and PLOT3D

written by Ms. D. Kennedy and Mr. A. Weitzenfeld,
respectively) under the supervision of the Resource
Director,
Director, Prof. D.Z. D'Argenio. The graphics library
PGPLOT was made available to us by Dr. T.J. Pearson
of the California Institute of Technology, whose
contribution we wish to acknowledge.

included in

1.

10.

11.

12.

13.

14.

15.

Prof. V.Z. Marmarelis, and Associate

The modular (individually executable) programs

GENER:

. GENER2:

. PLOT:

. PLOT3D:

. DSSTAT:

. CORREL:

. CONVOL:

FFT:

IFFT:

SPECT:

KERNEL:

MODRES:

NARMAX :

ARMA:

PAREST:

Version I of LYSIS are:

generates one-dimensional datasets
specified by the user; also, it operates
on existing one-dimensional datasets.

generates two-dimensional datasets
specified by the user; also, it operates
on existing two-dimensional datasets.

displays one-dimensional datasets;

the user can display up to six datasets
simultaniously, change the range of

the axes and specify labels.

displays two-dimensional datasets;
the user can change the viewing point,
the range of axes and specify labels.

computes basic statistics and the
amplitude histogram of one-dimensional
datasets specified by the user.

computes auto- and crosscorrelation
of one-dimensional datasets specified
by the user.

computes the convolution of one-dimen-
sional datasets specified by the user.

computes the Fast Fourier Transform
of one-dimensional dataset specified
by the user.

computes the inverse Fast Fourier
Transform of one-dimensional dataset
specified by the user.

computes the spectrum of one-dimensional
dataset specified by the user.

computes the zero, first and second
order Wiener kernels from (white-noise)
input-output data.

computes the model response of first
and second order Wiener models (specified
by the kernels).

simulates nonlinear difference equations
involving three variables and displays
the result.

simulates linear difference equations
involving two variables, and displays
the results.

computes parameter estimates of speci-
fied ARMA models for given input-output
data (using ordinary least squares).

16. TRANS: transcribes non-LYSIS datasets into
LYSIS dataset format.

EXAMPLE

Consider a second-order Wiener system with
the kernels shown in Fig. lab. A GWN input x of
8000 datapoints is used to test the system producing
the output y. The output signal in this case is
generated wusing LYSIS program MODRES. Segments
of the input-output data are shown in Fig. 2. The
crosscorrelation technique is applied on these
data (using LYSIS program KERNEL) to obtain estimates
of the first and second order Wiener kernels shown
in Fig. 3ab. The estimation variance of these kernel
estimates (evident especially is the second order)
is due to the random nature of the input and the
finite record length used. This estimation variance
can be reduced by increasing the input-output record
length and/or optimizing the input bandwidth
(Marmarelis & Marmarelis, 1978). The 2-D and 3-D
graphics are done with LYSIS programs PLOT and
PLOT30, respectively.

An example of LYSIS programs used in the
computation of the system output and estimates
of the Wiener kernels (of first and second order)
is given below.

* MODRES =

This program computes the response to a given
input (stimulus) of a second-order Wiener model
specified by given kernels. The second-order kernel
is optional and leaving blank the file name of
the second-order kernel will result in the
computation only of the first-order model response.
Likewise, the model response based only on the
second-order term can be computed by leaving blank
the file name of the first-order kernel.

An example session with the program follows.
The wuser's 1input is in Tlower case letters, and
the program's output is in upper case letters.

$run modres
NAME OF MODEL RESPONSE:

gPECIFY THE INPUT SIGNAL:

gPECIFY THE 1ST-ORDER KERNEL DATASET:
géECIFY THE 2ND-ORDER KERNEL DATASET:
ESALUATION COMPLETED

FORTRAN STOP
$

* KERNEL *

This program computes first and the second
order Wiener kernels from given input-output data
over a specified range of lags (with minimum and
maximum lag values determined by the wuser). In
order to obtain meaningful results (kernels), the
input data must be a white sequence. If all you
want is the first-order kernel,you should leave
blank the file name of the second-order kernel.
Likewise, if you only wish to compute the
second-order kernel, you should Tleave blank the
file name of the first-order kernel. The program
will display the value of the zero-order kernel
(which is the mean of the output data).

$run kernel

NAME OF 1ST-ORDER KERNEL:
kl

NAME OF 2ND-ORDER KERNEL:
k2

DEFINE THE OUTPUT SIGNAL

8 4
DEFINE THE INPUT SIGNAL:

X

PLEASE ENTER START SHIFT-VALUE:

0

PLEASE ENTER END SHIFT-VALUE:

40

ZERO-ORDER KERNEL IS EQUAL TO: 1.2476
1ST KERNEL COMPLETED

2ND KERNEL COMPLETED

FORTRAN STOP
$

FIRST ORDER KERNEL
0.700

0.600
0.500 7

0.400

0.200 -
0.100 o

0.0 4
-0.100 3

-0.200 J

T T —

0.0 10.0 20.0 30.0 40.0 50.0

TAU

Fig. la: First-order Wiener kernel hj of simulated
system.

SECOND ORDER KERNEL

/ \
iy
P s W W2

22
T5LT 3 25>
SSELZ IR IRCIRUIDSITHILZ IS 2SI, 2>
S e S A S e o 00 30 SRS ““:°0:zq..
e

X-MIN= 0.0000 Y-MIN= 0.0000 Z-MIN= -0.149SE+00
X-MAX= 39.0000 Y-MAX= 39.0000 Z-MAX= 0.4064E+00
Fig. 1b: Second-order Wiener kernel hp of simulated

system.

