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Introduction

Let X be a set.
We define
1x :={(z,2) |z € X}.

Let r C X x X be given. We set
ri={(y,2) | (z,9) €7},
and, for each z € X, we define
zr:={y€ X | (z,y) €r}.

Let G be a partition of X x X such that § ¢ G > 1x, and assume that,
for each g € G, g* € G. Then the pair (X, G) will be called an association
scheme if, for all d, e, f € G, there exists a cardinal number agqes such that,
forall y, z € X,

(v,2) € f = |ydNze*| = ages.!

In these notes, we shall always say scheme instead of association scheme.
The pair (X, G) will always denote a scheme. We shall always write 1 in-
stead of 1x. The elements of {a4es | d, €, f € G} will be called the structure
constants of (X, G).2 Occasionally we shall use the expression regularity con-
dition in order to denote the condition which guarantees the existence of the
structure constants.

The present text provides an algebraic approach to schemes. Similar to
the theory of groups, the theory of schemes will be viewed as an elementary

! This definition of association schemes is slightly more general than the usual one.
Usually one requires additionally at least that |X| be finite. In this case, the
term “homogeneous coherent configuration” is common, too; see [14]. (Also in
the present text the finiteness of |X| plays an important role.) It is also often
required that, for all d, e, f € G, ades = aeds; see, e.g., [1].

The term “association scheme” was introduced in [2]. There it is even required
that, for each g € G, g* = g, and this additional condition (which implies that,
for all d, e, f € G, ades = aeqr) is often included in the definition of association
schemes.

In order to emphasize the algebraic treatment, association schemes (in the
present sense) were called “generalized groups” in [34]. .

2 In the literature, the structure constants are also called “intersection numbers”.
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algebraic theory which is naturally connected to certain geometric structures.
In fact, the theory of schemes generalizes naturally the theory of groups.

Let us first see to what extent the class of groups may be viewed as a
distinguished class of schemes.

For each g € G, we abbreviate

Ng 1= Ggg+1.

A non-empty subset F of G will be called thin if {1} = {n; | f € F}.
(Note that we always have n; = 1.) The pair (X, G) will be called thin if G
is thin.

Let E, F C G be given. We define

EF:={g€G| ) ) acsy#0}

e€E feF

and call it the complex product of E and F'.

It follows readily from the definition of the complex product that, if (X, G)
is thin,

G(X,G) :={{g} g€ G}

is a group with respect to the compler multiplication, with {1} as identity
element. 5

Conversely, let @ be a group. For each § € 6, we define § := {((,n) €
© x @ | (6 =n}, and we set O := {f | § € @}. Then

7(6) = (8,6)

is a thin scheme.3

Now it is readily verified that, if (X, G) is thin,
TG(X,G6)) = (X,G).*
Moreover, for each group 6,
G(T(@)) =e.

The elementary proofs of these two facts will be given as Theorem A (iii),
(iv) in the appendix of these notes. What is important here for us is that
these two facts allow us to identify each group with its corresponding thin
scheme. Therefore, we may view the class of groups as a distinguished class
of schemes, namely as the class of thin schemes.

8 This iigasy to see. First of all, it is clear that 1 = 1¢ and that, for each 8 € O,
0* = 9-'. But also the regularity condition is easily verified for the pair (@, ).
Let B8, v, €, ¢, n € O be given, and assume that (8,7) € 7. Then, BENYC* # 0
if and only if Be = v¢~! if and only if Be¢ = 7 if and only if ¢ = n. Thus,
|BEN ¥(*| = de¢,n, where 4 is the Kronecker delta.

4 In Section 1.7, we shall say what it means for two schemes to be isomorphic.
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There is still another class of important mathematical objects which can be
viewed as a distinguished class of schemes, namely the buildings. Buildings
were introduced by J. TITs in [27; (3.1)] as a particular class of chamber
complexes. Later, in [28; Theorem 2], Tits characterized the buildings as a
particular class of “chamber systems”. This characterization indicated already
a strong relationship between buildings and schemes. In fact, due to this
characterization, it is only a small step to see that, like groups, buildings
can be viewed naturally as a distinguished class of schemes. Moreover, the
embedding of the buildings into the class of schemes is similar to the one of
groups. In other words, there exists a class of schemes which for the buildings
plays exactly that role which is played by the class of thin schemes for the
groups.

Let us give here a rough idea of the definition of this class of schemes.

In Section 1.4, we shall define what it means for an element of G to be a
“(generalized) involution”. The set of all involutions of G will be denoted by
Inv(G). For each L C Inv(G), we shall define in Section 5.1 what it means
for (X,G) to be a “Coxeter scheme with respect to L”. Now the pair (X, G)
will be called a Cozeter scheme if there exists L C Inv(G) such that (X,G)
is a Coxeter scheme with respect to L.

The Coxeter schemes form the class of those schemes which represent the
buildings within the class of all schemes. More precisely, the following three
statements hold.

First, if (X, G) is a Coxeter scheme, there exists a natural way to construct
a building

B(X,G)

from (X, G).
Secondly and conversely, to each building g, say, there is associated nat-
urally a Coxeter scheme which we shall denote by

A(g)-
Finally, if (X, G) is a Coxeter scheme,
A(B(X,G)) = (X,G).
Moreover, for each building g,
B(A(g)) = 8.

5 In the literature, the definition of buildings changes occasionally. In these notes,
buildings are always understood to be regular. Viewing buildings as chamber
systems (and we shall do that always in this text) we say that a building in the
sense of [28] is regular if any two members of one of the defining partitions have
the same cardinality. It is an easy exercise in the theory of buildings to prove that
buildings in the sense of [27] are regular. It is also obvious that thin buildings in
the sense of [28] are regular. In particular, the class of buildings in the sense of
the present text contains strictly the class of buildings in the sense of [27].
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Occasionally we shall speak of the (B, .A)-correspondence in order to de-
note the above-mentioned correspondence between buildings and Coxeter
schemes. Similarly, the above-mentioned correspondence between groups and
thin schemes will be called the (G, T')-correspondence.

The (B,.A)-correspondence is not as easy to describe as the (G, T)-
correspondence. Therefore we shall not give the details here. They will be
given as Theorem E in the appendix of these notes.

There is a simple and natural way to identify Coxeter groups and thin
buildings; see [28; (2.3.1)]. Modulo this identification, the (B, A)-correspon-
dence and the (G, T)-correspondence coincide on the class of the thin Cox-
eter schemes. More precisely, the following two statements are true. If (X, G)
is a thin Coxeter scheme, G(X,G) = B(X,G). For each Coxeter group O,
T(©) = A(O). As a consequence, thin Coxeter schemes correspond to Cox-
eter groups.6

Viewing groups and buildings as the cornerstones of the class of schemes it
seems to be promising to develop a structure theory of schemes between these
cornerstones. The object of the present lecture notes is in the first place to
develop a treatment of schemes analogous to that which has been so successful
in the theory of finite groups.

As indicated in the first footnote, the condition | X | € N plays an important
role in these notes. Let us say that (X, G) is finite if | X| € N.

The starting point of our approach to schemes is the definition of the com-
plex product. The complex product allows us to treat schemes as algebraic
objects. The first chapter is devoted to elementary consequences of the defi-
nition of the complex product. Substructures of schemes as well as quotient
structures of finite schemes are defined naturally, and we end this introduc-
tory chapter with the generalization of the isomorphism theorems [22; §2] for
finite groups due to E. NOETHER.

The second chapter begins with a generalization of the fundamental group-
theoretical theorem [16; §10] due to C. JORDAN and O. HOLDER. As in the
theory of finite groups, this theorem allows us to speak of “composition fac-
tors”. In Sections 2.2, 2.3, and 2.4, we focus our attention on schemes which
have thin composition factors. After that, other decompositions of schemes,
such as “direct”, “quasi-direct”, and “semidirect products”, are introduced.
We include the theorem [9; Theorem 3.17] of P. A. FERGUSON and A. Tu-
RULL on “indecomposable” schemes.

In the third chapter, we collect various algebraic results which are needed
for the representation theory (Chapter 4) and for the theory of generators of
schemes (Chapter 5).

The fourth chapter gives a general introduction into the representation
theory of finite schemes. We start with a generalization of the fundamental
group-theoretical theorem [21] of H. MASCHKE on the semisimplicity of group
algebras. After that, our approach is similar to that one given by D. G.

6 _.as is to be expected...
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HIGMAN in [14]. In this chapter, we restrict ourselves to general structural
results ignoring the huge amount of literature which exists in this area.

For each L C Inv(G), we shall define in Section 5.1 what it means for
(X, G) to be “L-constrained”. The pair (X, G) will be called constrained if
there exists L C Inv(G) such that (X, G) is L-constrained.

In the fifth chapter, we first investigate constrained schemes. The con-
strained schemes form a class of schemes which is slightly larger than the
above-mentioned class of Coxeter schemes. Their definition as well as their
treatment seems to be particularly natural. The constrained schemes provide
an appropriate framework for showing how smoothly Coxeter schemes are em-
bedded into the class of schemes. From a general algebraic point of view, we
consider Section 5.1 as the heart of these notes.

Let us call the pair (X,G) thick if {1} = {g € G | ng = 1}. Then it is
particularly easy to exhibit the significance of Theorem 5.1.8(ii). This the-
orem says in particular that thick constrained schemes and thick Coxeter
schemes are the same thing. Therefore, if one is willing to view buildings
generally as thick, in other words, if one assumes the definition of [27; (3.1)]
for buildings, Theorem 5.1.8(ii) implies that, via the (G, T')-correspondence,
buildings and thick constrained schemes are the same thing. Since the def-
inition of constrained schemes is particularly simple and natural, Theorem
5.1.8(ii) provides us with probably the most succinct definition of buildings.

In the fifth chapter, we include a complete proof of the famous Theorem [8;
Theorem 1] of W. FEIT and G. HIGMAN on finite generalized polygons. (We
shall present the proof which was given by R. KILMOYER and L. SOLOMON in
[20].) Moreover, we give a conceptually alternate and simultaneous approach
to the theorems [24; Theorem 2] of S. PAYNE and [23; Satz 1] of U. OTT
on polarities of finite generalized quadrangles and finite generalized hexagons
via semidirect products. The main focus of the remainder of the fifth chapter
is then on an appropriate generalization of Coxeter schemes of “rank” 2.
The chapter ends with a generalization of the (algebraic) characterization [34;
Theorem B] of finite generalized polygons and Moore geometries; see Theorem
5.8.4.

The appendix of these notes is devoted to the embedding of the class
of groups as well as the class of buildings into the class of schemes. In
other words, we establish explicitly the (G, T')-correspondence and the (B, A)-
correspondence.

Let us mention here that, apart from the class of groups and the class
of buildings, other classes of mathematical objects as well can be viewed
as specific classes of schemes. For the class of distance-regular graphs the
embedding was given implicitly by P. DELSARTE in [6; Theorem 5.6]. As
a consequence of this, one obtains the (elementary) fact that the class of
strongly regular graphs forms a distinguished class of schemes. The fact that
Moore geometries can be viewed as a specific class of schemes was partially
shown in [34; (2.4)]. In particular, the class of the 2-designs with A = 1 forms a
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distinguished class of schemes. As a consequence, a lot of problems and results
in graph theory or design theory can be viewed naturally or formulated easily
as problems or results on schemes; see, e.g., [32], [33], or [35].

It seems to be a thought-provoking question to ask for other algebraic or
geometric objects which can be viewed as classes of schemes.

Apart from technical advantages there is at least one other reason for
us to view mathematical objects such as groups, buildings, distance-regular
graphs, or Moore geometries as schemes. Namely, the language of schemes
provides a natural conceptual framework in which the above-mentioned ob-
jects may be characterized naturally. Theorem 5.8.4 and Corollary 5.8.5 are
characterizations of that type for finite generalized polygons and Moore ge-
ometries. A similar characterization of the class of all finite buildings, i.e., a
characterization without restriction of the rank, would be a challenging goal.

Let us conclude this introduction with three general remarks.

First of all, it might be helpful to mention here that the present text is
thought to be an introductory monograph. No attempt has been made to
give a complete account of the results available on schemes. In particular, the
well-worked-out connection between schemes and graphs has been omitted
completely. (This connection is discussed extensively in [3] and in [30].) On
the other hand, apart from a few elementary facts about vector spaces and
groups, the present notes are self-contained. They can be considered as an
introduction to the structure theory of schemes.

Secondly, the meaning of the symbols Z, N, and P is fixed for the whole
text. We shall denote by Z the set of rational integers. We set

N:={z€Z|0< z},

and the set of prime numbers will be denoted by P.

Finally, this is probably a good place for me to express my thanks to
Professor J. Tits, who was the first to encourage me to seek a general structure
theory of finite schemes. I am also grateful to Professor E. Bannai and to
Professor T. Ito, who invited me twice to visit Kyushu University, Fukuoka,
and to whom I owe my interest in schemes. Finally, I am grateful to M. Rassy,
who carefully read large parts of the manuscript, and to whom I owe numerous
simplifications of the text.

Kiel, September 30, 1995 Paul-Hermann Zieschang
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1. Basic Results

In this introductory chapter, we develop some basic terminology which will
be used throughout the remainder of the text.

1.1 Structure Constants

Our first lemma is an immediate consequence of the definition of the structure
constants of (X, G). (By § we mean the Kronecker delta.)

Lemma 1.1.1 Let e, f € G be given. Then
(1) Q1o = 0cf = ayie.
(ll) Qerf1 — Jefneo.

Lemma 1.1.2 Let g € G be given. Then
(i) For each x € X, |zg| = ny.

(i) lo| = nglX|.

(iii) If |X| € N, nge = ng.

Proof. (i) The definition of g* yields g** = g. Therefore, we have |zg| =
Agge1 = Ng.

(ii) follows from (i).

(iii) Assume that |X| € N. Then, as ¢ C X x X, |g| € N. But from (ii) we
also obtain that ng. |X| = |g*| = |g| = ng|X|. Therefore, ng. = ng. ]

Lemma 1.1.3 Let d, e, f € G be given. Then

(i) For each g € G, Y e QdebBbsg = 3 G Gdeglefe-
(ll) Qdef = Qesds f+.

(iii) agrene = acseanq.



2 1. Basic Results

Proof. (i) Let y, z € X be such that (y,z) € g. We count in two different
ways the elements of e N (yd x zf*). This proves (i).
(ii) Let y, z € X be such that (y, z) € f. Then, by definition,

Agey = |lydNze®| = |ze* Nyd™™| = aeeges-.
(iii) Apply (i) to (f,e*, 1) in the role of (e, f, g), and use (ii). O

Lemma 1.1.4 Let e, f € G be given. Then
(1) 2geG Gges = Meo.
(i) %ec Grge =My,

(iii) g€G Ge*fgNg = Neeny.

Proof. (i) Let y, z € X be such that (y,z) € f. We count in two different
ways the elements of {(z,g) € ze* x G | (y,z) € g}. This proves (i).
(ii) For each g € G, we apply Lemma 1.1.3(ii) to (f,g,€) in the role of

(d,e, f). Then
Z ajge = E ag‘f‘e‘ = nfi
g€eG g€eG
use (1).
(ii1) For each g € G, we apply Lemma 1.1.3(iii) to (e*,g) in the role of
(d,e). Then
Z ae‘]gng = Z agj’e'ne' = ne'nj;
g€G geG
use (i). O

Let g € G, let n € N\ {0,1,2}, and let f, ..., fn € G be given. Then
ay, .. .f.g is defined recursively by

afy..fng ‘= Z Afy .. fn-1e8efng-
e€G

The following lemma generalizes Lemma 1.1.3(i), (ii) and Lemma 1.1.4(iii).

Lemma 1.1.5 Let n € N\ {0,1}, and let f,, ..., fn € G be given.
(i) Assume that 3 < n, and let g € G be given. Then we have ay, 4., =

2eeG 311690 s fue-
(ii) For each g € G, ay, . .4 = ags. frg*-

(i) 3opeq af1. faghg = 1y, - o1y,
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Proof. (i) If n = 3, the claim is just a restatement of Lemma 1.1.3(i)
(with (e, f1, f2, f3) in the role of (¢, d, e, f)). Therefore, we assume that 4 < n.
Assuming that the claim holds for n — 1, we obtain that

Uy fag = D s fureOefug = D (D Ordetsy fu_1d)efng =

c€G c€G d€G
Z Af,y...fn1d Z Af dclcfng = Z Afy...fan-1d Z Af egldf,e —
deG ceG deG e€eG
Z af,eg(z afy. fo_1dCdfne) = Z Afiegfy. fres
e€G deG c€G

use Lemma 1.1.3(i).

(if) If n = 2, the claim is just a restatement of Lemma 1.1.3(ii) (with
(f1, f2,9) in the role of (d, e, f)). Therefore, we assume that 3 < n. Assuming
that the claim holds for n — 1, we obtain that

af, . fog = Z Qf, .. fo_1e8efng = Za!;e.goaj;_l...f;e. =Qs:. . fr9%;
eeG e€G

use Lemma 1.1.3(ii) and (i).

(ii1) If n = 2, the claim is just a restatement of Lemma 1.1.4(iii) (with
(f1, f2) in the role of (e*, f)). Therefore, we assume that 3 < n. Assuming
that the claim holds for n — 1, we obtain that

Eah...fﬂg"g = Z(Z fy...fam1e8efng)Ng = Zafl---fn—le Z Gefaghg =

geG g€EG e€G e€G geG
Zajl~~~fn—le(nenfn) = (Z Qfy. frorele)f, = Npy - Ty
e€G e€G

use Lemma 1.1.4(iii). O

1.2 The Complex Product

Recall that, for all E, F C G,
EF:={g€G| ) ) aes#0}

e€EE feF

Lemma 1.2.1 Let D, E, F C G be given. Then
(1)) fECF, DEC DF and EDC FD.
(ii) (DE)F = D(EF).
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Proof. (i) follows immediately from the definition of the complex product.

(ii) Let g € (DE)F be given. Then, by definition, there exist b € DE and
f € F such that apsgy # 0. Since b € DE, we find d € D and e € E such that
agebr £ 0. It follows that Qdebbfg #0.

Since agepaprg # 0, there exists ¢ € G such that agegacrc # 0; see Lemma
1.1.3(i). From this we conclude that a4cy # 0 and that acsc # 0. Froma.gc # 0
we obtain that ¢ € EF. Thus, as agey # 0, g € D(EF).

Since ¢ € (DE)F has been chosen arbitrarily, we have shown that
(DE)F C D(EF). Similarly, one obtains that D(EF) C (DE)F. O

From the definition of the complex product we obtain immediately that,
forall E, F C G,
EF=0 & 0e{E,F}.

Moreover, from Lemma 1.1.1(i) we deduce easily that, for each F C G,
F{l1} = F = {1}F.

Therefore, Lemma 1.2.1(i1) says that the set of all non-empty subsets of G is
a monoid with respect to the complex multiplication and with {1} as identity
element. This monoid will play an important role in the fifth chapter of these

notes.
For each F C G, we define

F*={f"|feF}

It is obvious that F** = F'.
Lemma 1.2.2 Let E, F C G be given. Then (EF)* = F*E*.

Proof. For each g € G, we have

GE(EF) & ¢"€EF & Y > aeyer #0 &

e€E feF
ZZaj-eog;éO@ EZajeg;éO<=>g€F'E';
e€EE fEF JEF* e€E*
use Lemma 1.1.3(ii). O

Let n € N\ {0,1,2}, and let Fy, ..., F,, C G be given. Then F; ---F, is
defined recursively by

Fy- - Fy=(F---Fy_1)F,.



1.2 The Complex Product 5

The following lemma generalizes Lemma 1.2.1(ii) and Lemma 1.2.2.

Lemma 1.2.3 Letn € N\ {0,1}, and let Fy, ..., F,, C G be given. Then
we have

(l) 1f3 S n, Fl"-Fn = FI(FZFn)

(ii) (Fy - Fa)* = Fy - FY.

Proof. (i) If n = 3, the claim is just a restatement of Lemma 1.2.1(ii).
Therefore, we assume that 4 < n. Assuming that the claim holds for n — 1,
we obtain that

Fi-- Fy=(F---Fa))Fy = (Fi(Fy- - Fao1))Fn =
Fl((F2 . "Fn—l)Fn) = Fl(Fz-- -Fn);

use Lemma 1.2.1(ii).

(ii) If n = 2, the claim is just a restatement of Lemma 1.2.2. Therefore,
we assume that 3 < n. Assuming that the claim holds for n — 1, we obtain
that

(Fi - Fp)* = (Fi(Fa- - Fp))* = (Fa-- - Fp)"Ff =
(F- - FR)Ff = Fg-- - Fy;

use (i) and Lemma 1.2.2. o

Let F C G be given. For each £ € X, we define

zF = U zf.

fEF

For each g € G, we set
gF :={g}F

and Fg := F{g}.

Lemma 1.2.4 Let n € N\{0,1}, and let Fy, ..., F, C G be given. Then,
for each g € G, the following conditions are equivalent.

(a) g€ Fy---Fy.

(b) Let y, z € X be such that (y, z) € g. Then there exist o, ..., z, € X
such that zo = y, £, = z, and, for eachi € {1,...,n}, z; € z;_1 F;.

(c) There ezist zg, ..., n € X such that (zo,z,) € g and, for each
i€ {1, o .,n}, T; €Exi_1F;.
(d) There ezist go, ..., gn € G such that go = 1, gn = g, and, for each

i€{l,...,n}, gi € gi1F;.
(&) (s fa)EFix... xFa Of1.dng £ 0
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Proof. (a) = (b) The claim is obvious for n = 2. Therefore, we assume
that 3 < n.

Since g € (Fy1--- Fn_1)Fy, there exist £ € X and f € F;---F,_; such
that (y,z) € f and z € zF,,. Now, by induction, there exist zg, ..., 2,—; € X
such that o =y, z,—1 =z, and, foreach i € {1,...,n — 1}, z; € z;_ F;.

(b) = (c) This follows from the fact that g # 0.

(c) = (d) For each i € {0,...,n}, let g; € G be such that (z¢,z;) € g;.
Then go = 1, go = ¢, and, for each i € {1,...,n},

Z ag,_,sg. # 0
fEF;

It follows that, for each i € {1,...,n}, g; € gi—1 F;.

(d) = (e) The claim is obvious for n = 2. Therefore, we assume that
3 < n.

By induction, we have

Z Afy...fno1gn-1 ?é 0.
(fl:---,fn—l)EF]X.”XF,._I
Since g € gn_1Fy, there exists f, € F,, such that ag,_, . 4 # 0. It follows that
Z afl“*fn—lgn—lagn—lfng # 0
(!lv~~v!u)EF1)<...XF“

Thus, we have

E Qfy..fng = Z Zafx--».fn—leaefm#()'

(f1,--:fn)EF1X...XFn (f1,--1fn)EF1X...XF, €€G

(e) = (a) Again, the claim is obvious for n = 2. Therefore, we assume
that 3 < n.

Let (fi,...,fa) € F1 x ... x F, be such that ay,...;.4 # 0. Then there
exists e € G such that ay,. s, e # 0 and a.;,g # 0. From ay, 4, _,. # 0
we obtain by induction that e € Fy---F,_;. On the other hand, acs,4 # 0
implies that g € eF),. Thus, by Lemma 1.2.1(i),g € F; - - - F,,. a

For all e, f € G, we abbreviate
ef :=e{f}.
Note that, for all E, F C G,

EF=Jer=JEf=J e

e€E f€F e€E f€F



