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Preface

These proceedings contain a selection of refereed papers presented at or related
to the Annual Workshop of the TYPES project (EU coordination action 510996),
which was held April 18-21, 2006 at the University of Nottingham, UK.

The topic of this workshop was formal reasoning and computer programming
based on type theory: languages and computerized tools for reasoning, and appli-
cations in several domains such as analysis of programming languages, certified
software, formalization of mathematics and mathematics education.

The workshop was attended by more than 100 researchers and included more
than 60 presentations. We also had the pleasure of three invited lectures, from
Bart Jacobs (University of Nijmegen), Hongwei Xi (Boston University) and Si-
mon Peyton Jones (Microsoft Research). Simon Peyton Jones spoke in a joint
session with the workshop on Trends in Functional Programming (TFP), which
was co-located with the TYPES conference.

From 29 submitted papers, 17 were selected after a reviewing process. The
final decisions were made by the editors.

This workshop followed a series of meetings of the TYPES working group
funded by the European Union (IST project 29001, ESPRIT Working Group
21900, ESPRIT BRA 6435). The proceedings of these workshop were published
in the LNCS series:

TYPES 1993 Nijmegen, The Netherlands, LNCS 806
TYPES 1994 Bastad, Sweden, LNCS 996

TYPES 1995 Turin, Italy, LNCS 1158

TYPES 1996 Aussois, France, LNCS 1512

TYPES 1998 Kloster Irsee, Germany, LNCS 1657
TYPES 1999 Lokeborg, Sweden, LNCS 1956

TYPES 2000 Durham, UK, LNCS 2277

TYPES 2002 Berg en Dal, The Netherlands, LNCS 2646
TYPES 2003 Turin, Italy, LNCS 3085

TYPES 2004 Jouy-en-Josas, France, LNCS 3839

ESPRIT BRA 6453 was a continuation of ESPRIT Action 3245, Logical
Frameworks: Design, Implementation and Experiments. Proceedings for annual
meetings under that action were published by Cambridge University Press in the
books Logical Frameworks and Logical Environments, edited by Gérard Huet and
Gordon Plotkin.

We are grateful for the support of the School of Computer Science and Infor-
mation Technology at the University of Nottingham in organizing the meeting.
We should like to thank James Chapman, Wouter Swierstra and Peter Morris,
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who helped with the administration and coordination of the meeting. We are
also grateful to Peter Morris for help in the preparation of the volume.
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Wey!’s Predicative Classical Mathematics as a
Logic-Enriched Type Theory*

Robin Adams and Zhaohui Luo

Dept of Computer Science, Royal Holloway, Univ of London
{robin,zhaohui}@cs.rhul.ac.uk

Abstract. In Das Kontinuum, Weyl showed how a large body of clas-
sical mathematics could be developed on a purely predicative founda-
tion. We present a logic-enriched type theory that corresponds to Weyl'’s
foundational system. A large part of the mathematics in Weyl’s book
— including Weyl’s definition of the cardinality of a set and several re-
sults from real analysis — has been formalised, using the proof assistant
Plastic that implements a logical framework. This case study shows how
type theory can be used to represent a non-constructive foundation for
mathematics.

Keywords: logic-enriched type theory, predicativism, formalisation.

1 Introduction

Type theories have proven themselves remarkably successful in the formalisation
of mathematical proofs. There are several features of type theory that are of
particular benefit in such formalisations, including the fact that each object
carries a type which gives information about that object, and the fact that the
type theory itself has an inbuilt notion of computation.

These applications of type theory have proven particularly successful for the
formalisation of intuitionistic, or constructive, proofs. The correspondence be-
tween terms of a type theory and intuitionistic proofs has been well studied. The
degree to which type theory can be used for the formalisation of other notions
of proof has been investigated to a much lesser degree.

There have been several formalisations of classical proofs by adapting a proof
checker intended for intuitionistic mathematics, say by adding the principle of
excluded middle as an axiom (such as [Gon05]). But the metatheoretic properties
of the type theory thus obtained, and to what degree that theory corresponds to
the practice of classical mathematics, are not well known. For the more exotic
schools of mathematics, such as predicativism, the situation is still worse.

We contend that the intuitions behind type theory apply outside of intuition-
istic mathematics, and that the advantages of type theory would prove beneficial
when applied to other forms of proof. It is equally natural in classical mathemat-
ics to divide mathematical objects into types, and it would be of as much benefit

* This work is partially supported by the UK EPSRC research grants GR/R84092 and
GR/R72259 and EU TYPES grant 510996.

T. Altenkirch and C. McBride (Eds.): TYPES 2006, LNCS 4502, pp. 1-17, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 R. Adams and Z. Luo

to take advantage of the information provided by an object’s type in a classical
proof. The notion of computation is an important part of classical mathematics.
When formally proving a property of a program, we may be perfectly satisfied
with a classical proof, which could well be shorter or easier to find.

We further contend that it is worth developing and studying type theories
specifically designed for non-constructive mathematical foundations. For this
purpose, the systems known as logic-enriched type theories (LTTs), proposed by
Aczel and Gambino [AG02, GA06], would seem to be particularly appropriate.

LTTs can be considered in a uniform type-theoretic framework that supports
formal reasoning with different logical foundations, as proposed in [Luo06]. In
particular, this may offer a uniform setting for studying and comparing differ-
ent mathematical foundations, in the way that predicate logic has in traditional
mathematical logic research. For example, when building a foundational system
for mathematics, we must decide whether the logic shall be classical or con-
structive and whether impredicative definitions are allowed, or only predicative.
Each of the four possible combinations of these options has been advocated as a
foundation for mathematics at some point in history. The four possibilities are:

— Impredicative classical mathematics. This is arguably the way in which
the vast majority of practising mathematicians work (although much of their
work can often also be done in the other settings). Zermelo-Fraenkel Set
Theory (ZF) is one such foundation.

— Impredicative constructive mathematics. Impredicative types theories
such as CC [CH88] and UTT [Luo94], or CIC [BC04] provide its foundations.

— Predicative classical mathematics. This was the approach taken by Weyl
in his influential monograph of 1918, Das Kontinuum [Wey18].

— Predicative constructive mathematics. Its foundations are provided,
for example, by Martin-Lof’s type theory. [NPS90, ML84].

Our type-theoretic framework provides a uniform setting for formalisation of
these different mathematical foundations.

In this paper, we present a case study in the type-theoretic framework: to
construct an LTT to represent a non-constructive approach to the foundation
of mathematics; namely the predicative, classical foundational system of math-
ematics developed by Weyl in his monograph Das Kontinuum [Wey18]. We de-
scribe a formalisation in that LTT of several of the results proven in the book.

Weyl presents in his book a programme for the development of mathematics on
a foundation that is predicative; that is, that avoids any definition which involves
a ‘vicious circle’, where an object is defined in terms of a collection of which it
is a member. The system presented in the book has attracted interest since,
inspiring for example the second-order system ACAq [Fef00], which plays an
important role in the project of Reverse Mathematics [Sim99). It is a prominent
example of a fully developed non-mainstream mathematical foundation, and so
a formalisation should be of quite some interest.

We begin this paper describing in Section 2 in detail the version of Weyl’s
foundational system we shall be using. We then proceed in Section 3 to de-
scribe a logic-enriched type theory within a modified version of the logical
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framework LF! [Luo94]. We claim that this logic-enriched type theory faith-
fully corresponds to the system presented in Section 2. The formalisation it-
self was carried out in a modified version of the proof assistant Plastic [CLO1],
an implementation of LF. We describe the results proven in the formalisa-
tion in Section 4. The source code for the formalisation is available online at
http://www.cs.rhul.ac.uk/ robin/weyl.

2 Weyl’s Predicative Foundations for Mathematics

Hermann Weyl (1885-1955) contributed to many branches of mathematics in
his lifetime. His greatest contribution to the foundations of mathematics was
the book Das Kontinuum [Wey18] in 1918, in which he presented a predicative
foundation which he showed was adequate for a large body of mathematics.

The concept of predicativity originated with Poincaré [Poi06], who advocated
the vicious circle principle: a definition of an object is illegitimate if it is defined
by reference to a totality that contains the object itself. Thus, we may not
quantify over all sets when defining a set (as with Russell’s famous ‘set of all
sets that do not contain themselves’); we may not quantify over all real numbers
when defining a real number (as with the least upper bound of a set of reals); and
so forth. A definition which involves such a quantification is called impredicative;
one which does not, predicative. The advocacy of the exclusion of impredicative
definitions has been given the name predicativism.

However much philosophical sympathy we may feel with predicativism, we
may worry that, since impredicative definitions are so common in mathematical
practice, their exclusion may require us to abandon too much of the mathemat-
ical corpus. Weyl’s book provides evidence that this is not necessarily the case.
In it, he shows how many results that are usually proven impredicatively can be
proven predicatively; and that, even for those results that cannot, one can often
prove predicatively a weaker result which in practice is just as useful. He does
this by laying out a predicative foundation for mathematics, and developing a
fairly large body of mathematics on this foundation.

A further discussion of the background to and content of Weyl’s monograph
can be found in Feferman [Fef93].

2.1 Wey!’s Foundational System

We shall now present the version of Weyl’s foundational system on which we
based the formalisation. It differs from the semi-formal system described in Das
Kontinuum in several details. In particular, we have extended Weyl’s system with
several features which are redundant in theory, but very convenient practically;

! The logical framework LF here is the typed version of Martin-Lof’s logical frame-
work [NPS90]. Tt is different from the Edinburgh LF [HHP93]: besides the formal
differences, LF is intended to be used to specify computation rules and hence type
theories such as Martin-Lof’s type theory [NPS90] and UTT [Luo94]. A recent study
of logical frameworks can be found in [Ada04].
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these shall be described in the paragraphs headed ‘Extensions to Weyl’s system’

below. Our notation in this section also differs considerably from Weyl’s own.
Before turning to the formal details, we begin with a discussion of the intu-

itions behind Weyl’s system, which is constructed following these principles:

1. The natural numbers are accepted as a primitive concept.

9 Sets and relations can be introduced by two methods: explicit predicative
definitions, and definition by recursion over the natural numbers.

3. Statements about these objects are either true or false.

Regarding point 2, we are going to provide ourselves with the ability to define
sets by abstraction: given a formula ¢[x] of the system, to form the set

S ={z| ¢z]} - (1)

In order to ensure that every such definition is predicative, we restrict which
quantifiers can occur in the formula ¢|x] that can appear in (1): we may quantify
over natural numbers, but we may not quantify over sets or functions. In modern
terminology, we would say that ¢[z] must contain only first-order quantifiers.

Weyl divides the universe of mathematical objects into collections which he
calls categories. These categories behave very similarly to the types of a modern
type theory. (This is no coincidence: Weyl was influenced by many of the ideas in
Russell’s theory of types when constructing his system.) For example, there shall
be the category of all natural numbers, and the category of all sets of natural
numbers. We give a full list of the categories present in the system below.

The categories are divided into basic categories, those that may be quantified
over in a definition of the form (1); and the ideal categories, those that may
not. The category of natural numbers shall be a basic category; categories of
sets and categories of functions shall be ideal categories. In modern terminology,
the basic categories contain first-order objects, while the ideal categories contain
second-, third- and higher-order objects.

He proceeds to divide the propositions of his system into the small? proposi-
tions, those which involve quantification over basic categories only, and so may
occur in a definition of the form (1); and the large propositions, those which
involve quantification over one or more ideal category, and so may not.

In more detail, here is our version of Weyl’s foundational system.

Categories. There are a number of basic categories and a number of ideal cate-
gories, each of which has objects.

1. There are basic categories, including the basic category N of natural numbers.
2. Given any categories A,..., A, and Bi,..., By, we may form the ideal
category (A; x -+ x A,,) — Set (B1 X --- x By) of functions of m arguments
that take objects of categories A1, ..., A, and return sets of n-tuples of

2 Weyl chose the German word finite, which in other contexts is usually translated
as ‘finite’; however, we agree with Pollard and Bole [Wey87] that this would be
misleading.
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objects of categories Bi, ..., B;. The number m may be zero here; the
number n may not.

(These were the only categories of functions present in Das Kontinuum.
For the purposes of our formalisation, we have added categories of functions
A — B for any categories A and B; see ‘Extensions’ below.)

For example, taking m = 0 and n = 1 allows us to form the category
Set (B), the category of all sets whose elements are of category B. Taking
m = 1 and n = 2 allows us to form the category A — Set (B x C), the
category of all functions which take an object from A and return a binary
relation between the categories B and C.

Propositions

1. There are a number of primitive relations that hold between the objects of
these categories:
— the relation ‘z is the successor of y’ (Szy) between natural numbers;
— the relation ‘z = y’ between objects of any basic category;
— the relation (y1,...,yn) € F(z1,...,2m) where F is of category (A; x
o X Am) — Set (By X -+ X By,), z; of category A; and y; of B;.

2. The small propositions are those that can be built up from the primitive
relations using the operations of substituting objects of the appropriate cat-
egory for variables, the propositional connectives =, A, V and —, and the
universal and existential quantifications over the basic categories.

3. The propositions are those that can be built up from the primitive relations
using substitution of objects for variables, the propositional connectives and
quantification over any categories.

Objects

— Explicit Definition. Given any small proposition ¢[z1, ..., Zm, y1,. . ., Ynl,
we may introduce an object F'of category (A x - - -x A, ) —Set (By x - - - x B,)
by declaring

F('Z‘la LR 71‘77’7/) = {<y17' . 7yn> I d)[xlv' > & 71'm,?/17-~ 72/71]} (2)
Making this declaration has the effect of introducing the axiom
Vz,y(y € F(x) < ¢lz,y]) . )

Principle of Iteration. This principle allows us to define functions by
recursion over the natural numbers; given a function F from a category
S — S, we can form a function G of category SxN — S by setting G(X,n) =
F"™(X). G is thus formed by iterating the function F.

More formally, let S be a category of the form Set (B; x - - - x B,). Given
an object F' of category (A; x --- X A,, x S) — S, we may introduce an
object G of category (A; X --- X A, X S x N) — S by declaring

G(l‘l,...,l‘m,X,O):X 4
G(@1s s oy Kok + 1) = F(21, .., 2, Gl oy X B)) [ D
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where z; is affiliated with category A;, X with S, and k with N.
Making these declarations has the effect of introducing the axiom

Vz,y(y € G(z, X,0) —« y € X) (5)
Ve, y,a,b(Sab — (y € G(z,X,b) < y € F(z,G(z, X, a)))

Azioms. The theorems of Weyl’s system are those that can be derived via clas-
sical predicate logic from the following axioms:

1. The axioms for the equality relation on the basic categories.

2. Peano’s axioms for the natural numbers (including proof by induction).

3. The axioms (3) and (5) associated with any definitions (2) and (4) that have
been introduced.

We note that there is a one-to-one correspondence, up to the appropriate
equivalence relations, between the objects of category C' = (A4 X --- X Am) —
Set (B; x --- x By); and the small propositions ¢[z1,...,Tm,Y1,--- ,Yn), with
distinguished free variables z; of category A; and y; of category B;. Given any
F of category C, the corresponding small proposition is y € F' (z). Conversely,
given any small proposition ¢[z, y|, the corresponding object F’ of category C'is
the one introduced by the declaration F(x) = {y | [z, yl}.

Extensions to Weyl’s System. For the purposes of this formalisation, we
have added features which were not explicitly present in Weyl’s system, but
which can justifiably be seen as conservative extensions of the same. We shall
allow ourselves the following.

1. We shall introduce a category A x B of pairs of objects, one from the category
A and one from the category B. A x B shall be a basic category when A
and B are both basic, and ideal otherwise. This shall allow us, for example,
to talk directly about integers (which shall be pairs of natural numbers) and
rationals (which shall be pairs of integers).

2. We shall introduce a category A — B of functions from A to B for all
categories (not only the case where B has the form Set (- --)).

A — B shall always be an ideal category. For the system to be predica-
tive, quantification over functions must not be allowed in small propositions;
quantifying over A — N, for example, would provide an effective means of
quantifying over Set (A). (Recall that, classically, the power set of X and the
functions from X to a two-element set are in one-to-one correspondence.)

Weyl instead defined functions as particular sets of ordered pairs, and
showed in detail how addition of natural numbers can be constructed. For the
purposes of formalisation, it was much more convenient to provide ourselves
with these categories of functions, and the ability to define functions by
recursion, from the very beginning.

We shall permit ourselves to use a function symbol ‘s’ for successor, rather
than only the binary relation Szy.
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We have diverged from Weyl’s system in two other, more minor, ways which
should be noted. We choose to start the natural numbers at 0, whereas Weyl
begins at 1; and, when we come to construct the real numbers, we follow the
sequence of constructions N — Z — Q — R rather than Weyl’'s N —
Q*—Q—R

3 Weyl’s Foundation as a Logic-Enriched Type Theory

What immediately strikes a modern eye reading Das Kontinuum is how simi-
lar the system presented there is to what we now know as a type theory; al-
most the only change needed is to replace the word ‘category’ with ‘type’. In
particular, Weyl’s system is very similar to a logic-enriched type theory (LTT
for short).

The concept of an LTT, an extension of the notion of type theory, was pro-
posed by Aczel and Gambino in their study of type-theoretic interpretations
of constructive set theory [AG02, GAO6]. A type-theoretic framework, which
formulates LTTs in a logical framework, has been proposed in [Luo06] to sup-
port formal reasoning with different logical foundations. In particular, it ade-
quately supports classical inference with a notion of predicative set, as described
below.

An LTT consists of a type theory augmented with a separate, primitive mech-
anism for forming and proving propositions. We introduce a new syntactic class
of formulas, and new judgement forms for a formula being a well-formed propo-
sition, and for a proposition being provable from given hypotheses.

An LTT thus has two rigidly separated components or ‘worlds’: the datatype
world of terms and types, and the logical world of proofs and propositions,
for describing and reasoning about the datatype world®. In particular, we can
form propositions by quantification over a type; and prove propositions by
mduction.

In this work, we shall also allow the datatype world to depend on the logical
world in just one way: by permitting the formation of sets. Given a proposition
¢[x], we shall allow the construction of the set {z | ¢[z]} in the datatype world;
thus, a set shall be a term that depends on a proposition. (Note that these sets
are not themselves types.) This shall be the only way in which the datatype
world may depend on the logical world; in particular, no type may depend on a
proposition, and no type, term or proposition may depend on a proof.

We start by extending the logical framework LF with a kind Prop, standing for
the world of logical propositions. Then, we introduce a type for each category: a
construction in Prop for each method of forming propositions; a type universe U
of names of the basic categories; and a propositional universe prop of names of the
small propositions. Thus constructed, the LTT with predicative sets corresponds
extremely closely to Weyl’s foundational system.

# This is very much in line with the idea that there should be a clear separation
between logical propositions and data types, as advocated in the development of
type theories ECC and UTT [Luo94].



