BASIC
FORTRAN IV
PROGRAMMING

REVISED EDITION

DONALD H. FORD

3asiC
FORTRAN IV
Programming

DONALD H. FORD

University of North Dakota

LR

\ e Th o
\ o B &
v -?’.f‘_ 3 WN
17 - L
N

| IH |

1974 E9061650
Revised Edition

RICHARD D. IRWIN, INC. Homewood, lllinois 60430

Irwin-Dorsey International London, England WC2H 9N]
Irwin-Dorsey Limited Georgetown, Ontario L7G 4B3

WllllHlli

© RICHARD D. IRWIN, INC., 1971 and 1974

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

Revised Edition
First Printing, January 1974

ISBN 0-256-01580-5
Library of Congress Catalog Card No. 73-87258

Printed in the United States of America

LEARNING SysTEMs COMPANY—

a division of Richard D. Irwin, Inc.—has developed a
PROGRAMMED LEARNING AID

to accompany texts in this subject area.

Copies can be purchased through your bookstore

or by writing PLAIDS,

1818 Ridge Road, Homewood, Illinois 60430.

Basic FORTRAN IV Programming

Preface

This revised edition of Basic FORTRAN IV Programming, like the previous
edition, has been written specifically as a textbook for a first course in com-
puter programming,. It is designed to teach FORTRAN IV in particular
rather than the art of programming in general. The only mathematical
background required is a year of high school algebra. I have taken special
care to select illustrative examples and problems that the student already
understands so that only the art of communicating to the computer need
be learned.

My purpose in undertaking this revision has been twofold: (1) to make
the subject matter even easier to teach and to learn, and (2) to expand the
coverage. To accomplish these objectives, three chapters have been com-
pletely rewritten and the remainder have been given detailed editorial at-
tention, illustrations have been improved, and new material has been
added.

Coverage in the previous edition was restricted to Basic FORTRAN 1V,
a subset of the full version of the language. I have expanded this edition
to include several of the more useful features of the full version of the
language which are not available in the subset (e.g., logical IFs and DATA
statements) but, in each instance, the reader is cautioned that a more
powerful compiler is required to process such instructions. The version
covered in this text equals or exceeds the minimum American National
Standards Institute (ANSI) Standard X3.5-1966. It is an ideal version for
beginners to learn because it can be used on any IBM System/360 or /370

\%

vi Preface

and, with minor adjustments, it can also be used on almost any modern
computer system.

The order of presentation of each topic is that of a general introduction
followed by a specific discussion and a series of to-the-point illustrations
and examples. American National Standard Institute symbols are used in
all flowchart illustrations. Whenever appropriate, previously presented
material is briefly reviewed and compared to the topic under discussion.
Programming problems have been carefully correlated with the text mate-
rial and range from the easy to the difficult. Also, an adequate number of
problems is provided so that the instructor can alternate program assign-
ments.

Very elementary problems, which should be programmed and processed,
are provided at an early point in the text to motivate the student. The pur-
pose of a few easy programs is to develop confidence on the part of the
student as well as to provide a background for more sophisticated prob-
lems. When the student receives his “first-run” output from the computer
center, Appendix A should be a valuable aid. It explains the debugging
process in general and illustrates with actual computer output almost
every type of error the beginner will encounter. It explains what the error
is, the probable cause, and how to correct it.

For the benefit of those students who punch their own program or
correction cards, another Appendix explains the operation of a keypunch
machine. IBM System/360 and /370 control cards and the composition of a
typical elementary “job deck” are also briefly covered in an Appendix.

The first five chapters develop the required technical vocabulary and
provide the background necessary to write a variety of complete elemen-
tary programs. Beginning in Chapter 5, the material is developed so that
each succeeding chapter introduces new “short-cuts” as well as more
sophisticated programming techniques. This approach should encourage
students to read advance chapters before they are assigned.

It is difficult for a beginning programmer to appreciate the real power
of a computer unless he has had experience with arrays. Chapter 8 ex-
plains one-dimensional arrays in nontechnical terms and includes a series
of illustrative array routines. Chapter 9 on two- and three-dimensional ar-
rays is relatively short but includes enough information so the student can
appreciate what they are, how they work, and when they should be used.

The final chapter deals at length with the four types of subprograms but
purposely stays away from “high-powered” mathematics. Instead, the
emphasis is on the purpose and power of subprograms, how they are writ-
ten and used, and the fact that many are available to solve a wide variety
of problems. A complete listing of the IBM built-in subprograms is included
in an Appendix.

It is the intent of this book to teach FORTRAN as directly and quickly
as possible and to whet the student’s appetite for even more knowledge of

Preface vii

the language. Anyone who has mastered the details of this book will be
able to read and use the otherwise incomprehensible FORTRAN IV pub-
lications available from the various computer manufacturers.

Grateful acknowledgment is hereby made to the many users of the
previous edition who offered valuable suggestions for its improvement.
Constructive comments by students, instructors, and reviewers have had a
significant impact on the final product.

December 1973 Donarp H. Forp

Contents

1. Introduction 1

Computer Languages: Machine Languages. Human Oriented Languages.
FORTRAN. A Computer System: Hardware. Internal Structure. The
Punched Card: Description. The Hollerith Code. Fields. Records and Files.
FORTRAN Programming.

2. General Approach to Programming 21

Program Flowcharts. Programming Steps: Problem Definition. Flowchart-
ing. Coding. Compilation and Debugging. Testing and Execution.

3. Elements of FORTRAN IV 34

The Character Set: Alphabetic Letters. Numbers. Special Characters. State-
ment Types: Input/ Output. Arithmetic. Control. Nonexecutable. Statement
Composition: Key Words. Variable Names. Numbers or Constants. Expres-
sions. Codes. Statement Form: Statement Number Field. Continuation
Field. Statement Field. Identification Field. Terminating a Program: The
ST@P Statement. The END Statement. Constants: Integer Constants.
Floating Point Constants. Variable Names: Integer Variable Names. F loat-
ing Point Variable Names. Arithmetic Operators. Delimiters.

4. Arithmetic Statements 53

General Form. Arithmetic Expressions: Rules for Writing Arithmetic Ex-
pressions. Mixed Mode Expressions. Mixed Mode Statements: Truncation
of Decimal Fractions. Initialization of Variable Names. Unnecessary Blanks.

ix

10.

Contents

Input/Output Statements 65

Input: Data Card Input. The FORMAT Statement. The READ Statement.
Output: Data Card Output. Printed Output. Additional I/O Techniques:
FORMAT and READ Relationships. Selective Reading. Selective Writing.
Literals. Other Carriage Control Techniques.

Control Statements 102

Brief Programming Review. Branching and Looping. G@® T@ Statements:
Unconditional GO T@. Computed GO T(. Perpetual Loops. Arithmetic IF
Statement: General Form. Illustrative Examples. Arithmetic Expressions.
Loop Control: Uncontrolled Loops. Controlled Loops. Logical IF State-
ment: General Form. Summary.

Additional Control Statements and Alphameric Input/Output
Techniques 138

The D@ Statement: General Form. Illustrative Examples. Programming
Considerations. The CONTINUE Statement: Purpose of the CONTINUE
Statement. General Form. Illustrative Example. Alphameric Input and Out-
put Data: Alphameric Input Data Using FORMAT Literals. Alphameric
Input Data Using the A Format Code. Alphameric Output Using the A
Format Code.

One-Dimensional Arrays and Specification Statements 161

One-Dimensional Arrays: Subscript Indication. Use of Arrays. Specification
Statements: The DIMENSIQN Statement. Explicit Specification State-
ments. The EQUIVALENCE Statement. The DATA Statement. Statement
Order. Tllustrative Array Routines: Initializing All Array Elements to a
Specific Current Value. Creating Duplicate Arrays. Duplicating an Array
in Inverse Order. Creating an Array by Merging Existing Arrays. Selecting
the Largest Value from an Array. Counting How Many Times a Specific
Value Appears in an Array. Searching an Array for a Specific Value. Search-
ing Two Arrays for Matching Values. Computing Average of All Elements
in an Array. Sorting Values of Array Elements into Algebraic Order.

Two-Dimensional and Three-Dimensional Arrays 202

Two-Dimensional Arrays: Multiple Subscripting. Multiple Dimensioning.
Reading and Writing Two-Dimensional Arrays. Illustrative Routines.
Three-Dimensional Arrays: Multiple Subscripting. Multiple Dimensioning.
Reading and Writing Three-Dimensional Arrays. Illustrative Routines.

Subprograms 213

Function Subprograms: FORTRAN-Supplied Mathematical Function Sub-
programs. One-Statement Mathematical Function Subprograms. Declared-
FUNCTIDN Subprograms. SUBR@UTINE Subprograms: Declared SUB-
ROUTINE Subprograms. Summary, The COMMON Statement. The
Power of Subprograms.

Contents xi

Appendix A. Debugging Techniques 239

The Debugging Process. Errors Terminating Compilation: Statement Error
Messages. Summary Messages. Debugging Illustration Program—First Run.
Errors Terminating Execution: Error Codes. Errors in Programming Logic:
Detecting Logic Errors. Debugging Ilustration Program—Second Run.
Debugging Illustration Program—Final Run.

Appendix B. Operating an IBM “Keypunch” Machine 254

Model 29: General Description (Figure B—1). Keyboard Switch Panel (Fig-
ure B=2). Keyboard (Figure B-2). Punching Operations. Model 26: Operat-
ing the Machine. Special Character Codes.

Appendix C. System Control Statements 266
Job Deck Composition.

Appendix D. Built-in Mathematical Functions 269

Index 273

T

Introduction

CoMpUTER programming can be defined as the art of preparing a plan to
solve a problem and of reducing this plan to an explicit sequence of
machine-sensible instructions. Programming is essential to the use of com-
puters because computers without programs can do nothing.

Learning to program a computer can be compared to learning to ride
a motorcycle. A new motorcyclist must learn to balance on the machine,
to start, steer, and stop. He must acquire skill in the use of the various
switches, pedals, and controls provided by the manufacturer. He must
learn to communicate with the machine to use it as an effective means of
transportation. But it is possible to become a skilled motorcyclist without
understanding the principle of the internal-combustion engine or the tech-
nical aspects of the mechanical and electrical systems. Similarly, the begin-
ning programmer need not understand the many technical concepts of
computer design and electrical circuits; he must, however, learn to com-
municate with the machine to obtain the desired results. To communicate
machine-sensible instructions, he must use a programming language and
an acceptable communication medium such as punched cards.

This chapter provides an introduction to computer programming lan-
guages in general, a brief description of a specific computer system, and a
discussion of the punched card.

COMPUTER LANGUAGES

A computer can perform various arithmetic computations such as addi-
tion, subtraction, multiplication, and division. It can perform various logical
1

2 Basic FORTRAN IV Programming

functions such as comparing two values and determining if the first value
is less than, equal to, or greater than the second value, and such as dis-
tinguishing plus from minus and zero from nonzero. It can move data from
one location in the computer to another. It can also read data and write
results. It can do all these things, and more, at fantastic speeds but it can-
not think. It is a robot. It must be told when to start, what data to use, what
steps to take, what to do with the results, and when to stop. To perform a
specific task, it must be given a detailed series of instructions, called a pro-
gram, in a language it is designed to read and obey.

Machine Languages

There are many ways to design a computer or machine to produce an
optimum system for specific types of applications. As a result, with few
exceptions, each make and model has its own internal coding system and
each is designed to recognize or understand one unique language. Thus, a
program written in the language of one machine cannot be processed by
another.

The unique language which a computer is designed to recognize is
called machine language. This language consists of machine-sensible in-
structions which usually take the form of long strings of numbers. These
long strings of numbers may be in binary, decimal, octal, hexadecimal, or
some other representation depending upon the model of machine. For ex-
ample, 2A0405 is a valid hexadecimal notation “add command” for an
IBM/360 computer and 210042800857 is a valid decimal notation “add
command” for an IBM/1620. Some machines are designed to use fixed-
length instructions with each instruction requiring the same number of
digits; others use instructions of variable length.

The basic characteristics of a machine language are:

1. It is specific in meaning. It is unlike human language where words and
phrases may have different meanings in different contexts. With rare
exceptions, if a single character in a machine-language instruction is
changed, its entire meaning is changed.

2. It has a relatively small vocabulary. This is understandable when one
considers the complex mathematical calculations that can be performed
using combinations of only the four instructions for add, subtract,
multiply, and divide.

3. It is concise. Lengthy human language verbal instructions can be re-
duced to a few digits.

4. It is machine-oriented rather than human-oriented. It has no relation-
ship to the English language.

Programs written in machine language are called object programs.
Writing object programs is difficult and tedious. Machine-language pro-

1. Introduction 3

grammers must have a thorough knowledge of both the language and of
the internal operations of the computer to be programmed.

Human Oriented Languages

Suppose a Norwegian, who knew only his native tongue, wished to
write two letters—one to a German and the other to a Japanese. How
would he do it? Perhaps the most impractical approach would be to learn
both the German and Japanese languages before he attempted to com-
municate. Obviously, a much faster and easier method would be to write
both letters in Norwegian, then hire professional translators to convert the
letters into the other languages.

A person wishing to write instructions to a computer may be faced
with the same problem as the Norwegian. He knows how to express his
instructions in the English language, but the machine language understood
by the computer is foreign to him. He could, of course, employ a machine-
language programmer to perform the translation, thus solving his com-
munication problem. But, consider the advantages if he had a computer
program which was designed to translate English language, accurately and
without error, directly into machine language! In a sense, he could then
“talk” to a computer.

Unfortunately, no computer programs exist that will translate ordinary
English language into machine-language instructions. Attempts have been
made to write such programs but not with complete success. These at-
tempts, however, have resulted in translation routines that can make the
programmer’s job much easier. Human-oriented languages have been de-
veloped that are composed of letters, symbols, and numbers, grouped into
various combinations to form a limited vocabulary of English and pseudo-
English words and expressions. These languages are much easier to learn
and to use than the machine language of the computer. The development
of human-oriented languages has had a significant influence on the rapid
advancement of computer technology.

Translators. A program written in a human oriented language is called
a source program. The translator is a special program, usually supplied by
the manufacturer, that converts a human-oriented source program into a
unique machine-language object program for the computer model on
which it is translated. Source programs, for example, translated on an
IBM/1620 computer result in /1620 object programs; source programs
translated on an IBM/360 computer result in /360 object programs. This
may appear to involve more work because a program must be written in
one language, then translated into another language before it can be proc-
essed. It does involve more work, but the extra work is done by the com-
puter at electronic speed. Use of a translation routine results in at least two
major advantages. First, the programmer may be required to learn only one

4 Basic FORTRAN IV Programming

language rather than a different language for each computer make and
model used. Second, it is faster and easier to write programs in a human-
oriented language.

Currently, two broad classes of translators exist—one is called an as-
sembler, the other a compiler.

Assemblers. An assembler is used to translate a low-level human-
oriented language, called a symbolic language, into machine language.
Symbolic languages generally use mnemonic (meaning memory aid) codes
such as A for add, S for subtract, M for multiply, etc. An assembler is usu-
ally designed for a specific computer model. It generally converts symbolic
language source programs into machine-language object programs on a
one-for-one basis; that is, for each symbolic language instruction the as-
sembler generates one corresponding machine-language instruction. This
one-for-one translation makes it possible for the programmer, if he chooses,
to match his symbolic language instructions to the translated machine-
language instructions to see what occurred.

Compilers. A compiler is used to translate a high-level human-oriented
language called a problem-oriented language. A compiler is more power-
ful than an assembler. It may generate or “compile” a list of many
machine-language instructions for each problem-oriented language in-
struction. Thus, it is not an easy task to compare a series of high-level
language instructions with the translated machine-language instructions,
but, fortunately, such a comparison is rarely necessary. The use of high-
level language does not require a thorough knowledge of the intricacies of
the machine. Problem-oriented languages are not designed for a specific
computer; they are designed to be used in solving a special class of prob-
lem. They are written in pseudo-English (example: ADD A, B GIVING C)
or in common algebraic notation (C = A + B) rather than in mnemonic
code.

The beginning programmer might ask, at this point, why all programs
are not written in a high-level language. The answer to this question is
that high-level languages have inherent disadvantages that, in some appli-
cations, may outweigh the advantages. In general, a program initially
written in machine or assembler language will use more efficient code, will
make better use of specific machine input/output capabilities, and will
tend to use instructions that will execute faster at object time than a
compiler-translated program.

FORTRAN, the subject of this book, is a high-level language. Thus,
programs written in FORTRAN must go through a “double run” on the
computer. The first run is the compilation or translation run. This results
in a FORTRAN source program being converted into a machine-language
object program. The second run is the execution or computation run. This
results in a machine-language object program processing data and pro-

1. Introduction 5

ducing the desired results. This can perhaps best be illustrated schemat-
ically. (See Figure 1-1.)

FIGURE 1-1
Compiling a FORTRAN Source Program and Executing the Object

Program

COMPILATION
Central
Input Processing Unit Output

FORTRAN
Source
Program

(Prepared by
Programmer)

Machine
" | Language
Object Program

Process

FORTRAN
Compiler

(Supplied by

Manufacturer)

EXECUTION

Central
Input Processing Unit Output

Language

Machine
Object Program

(Compilation
Output)

’ Data

Large-scale computers can accept both a source program and problem
data in one run. The intervening steps are handled automatically, but the
logical procedures are the same as illustrated in Figure 1-1.

Process

Results

FORTRAN

Many human-oriented languages are in existence. This book is con-
cerned with the one developed by IBM and originally published in 1957.
Called FORTRAN, an acronym for FORmula TRANGslation, it is probably

6 Basic FORTRAN 1V Programming

the most widely used problem-oriented language. It is often referred to as a
“scientific language” and is designed to permit complex mathematical ex-
pressions to be stated similarly to regular algebraic notation. It has become
an extremely popular language because of the ease with which it can be
learned and because of the wide variety of applications for which it has
been found suitable.

FORTRAN is not a dead language—it is subject to change. During its
brief life-span, FORTRAN has been improved by modifications, additions,
and deletions. As a result, FORTRAN, like ordinary human languages,
suffers from the existence of several versions and dialects; this book uses
a most current version called FORTRAN 1V.

The American National Standards Institute, Inc. (ANSI), has estab-
lished a FORTRAN IV standard that is intended as a guide for manu-
facturers, consumers, and the general public. Conformance to this standard
is not required; furthermore, there are many computer makes and models
which differ both in size and in engineering design. Thus, some ANSI fea-
tures are not present in all compilers whereas others go beyond the
standard. It should be noted, however, that ANST has had a major influence
on the development of FORTRAN. As a result, any programmer who has
mastered one current version of the language (such as FORTRAN IV for
IBM System/360 and /370, which is used in this book) will find it rela-
tively easy to learn the slight variations in other versions. Thus, in general,
a FORTRAN programmer can communicate with any computer having a
FORTRAN compiler. For this reason, FORTRAN is said to be “machine-
independent” in that it may be written without regard for the specific make
or model of machine on which it will be processed.

A COMPUTER SYSTEM

As previously indicated, one of the advantages of FORTRAN, from
the beginning programmer’s point of view, is that a thorough knowledge
of the intricate details of various computer systems and designs is not re-
quired; but it is useful to have at least a general understanding of the
machine to be programmed. This section illustrates what an IBM System/
360 looks like and briefly describes how it works. Although a specific ma-
chine is used for illustrative purposes, the general concepts apply to all
modern computers, regardless of make or model.

Hardware

The physical equipment that makes up a computer system is called
hardware. A minimum configuration of hardware consists of a central
processing unit, one input device, and one output device. Generally speak-

9061650

1. Introduction 7

ing, the more input and output devices a computer system has, the more
jobs it can do. Figure 1-2 illustrates the IBM System/360.

'IGURE 1-2
BM System/360

Central Processing Unit i . . | High-
y | | Speed
Printer

Magnetic
Disk Units

Printer«Keyboard
or
"Typewriter Console’

Photo courtesy of IBM Corp.

Central Processing Unit (CPU). The CPU is the actual computer. It
has three basic internal components. The “memory” unit (described in the
next section of this chapter) serves as a storage area for both the informa-
tion being processed and for the program instructions. Mathematical cal-
culations are performed within the arithmetic unit. The control or super-
visory unit directs the overall operations of the computer system and serves
as a coordinator between the other internal units and the input and output
devices. One end of the CPU exterior has a control panel with various
switches and dials used to operate the machine. A light panel instantly
indicates to the expert what the computer is doing, or it can be used to
indicate the contents of any particular location within the computer.

