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This volume provides a detailed account of bosonization. This important tech-
nique represents one of the most powerful nonperturbative approaches to many-
body systems currently available.

The first part of the book examines the technical aspects of bosonization. Topics
include one-dimensional fermions, the Gaussian model, the structure of Hilbert
space in conformal theories, Bose-Einstein condensation in two dimensions, non-
Abelian bosonization, and the Ising and WZNW models. The second part
presents applications of the bosonization technique to realistic models including
the Tomonaga—Luttinger liquid, spin liquids in one dimension and the spin-
1/2 Heisenberg chain with alternative exchange. The third part addresses the
problems of quantum impurities. Chapters cover potential scattering, the X-ray
edge problem, impurities in Tomonaga-Luttinger liquids and the multi-channel
Kondo problem. This book will be an excellent reference for resecarchers and
graduate students working in theoretical physics, condensed matter physics and
field theory.
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Preface

We used to think that if we know one, we knew two, because one and one
are two. We are finding that we must learn a great deal more about ‘and’.
Sir Arthur Eddington, from The Harvest of a Quiet Eye, by A. Mackay

The behaviour of large and complex aggregations of elementary particles,
it turns out, is not to be understood in terms of a simple extrapolation of
the properties of a few particles. Instead, at each level of complexity entirely
new properties appear, and the understanding of the new behaviours requires
research which I think is as fundamental in its nature as any other.

| P. W. Anderson, from More is Different (1972)

High energy physics continues to fascinate people inside and outside of
science, being perceived as the ‘most fundamental’ area of research. It
is believed somehow’ that the deeper inside the matter we go the closer
we get to the truth. So it is believed that ‘the truth is out there’ — at
high energies, small distances, short times, Therefore the ultimate theory,
Theory of Everything, must be a theory operating at the smallest distances
and times possible where there is no difference between gravitational and
“all other forces (the Planck scale). All this looks extremely revolutionary
and complicated, but once a condensed matter physicist has found time
and courage to acquaint himself with these ideas and theories, these
would not appear to him utterly unfamiliar. Moreover, despite the fact
that the two branches of physics study objects of vastly different sizes,
the deeper into details you go, the more parallels you will find between
the concepts used. In many cases the only difference is that models are
called by different names, but this has more to do with funding than with
the essence. Sometimes differences are more serious, but similarities still
remain, for example, the Anderson-Higgs phenomenon in particle theory
is very similar to the Meissner effect in superconductivity; the concept
of ‘inflation’ in cosmology is taken from the physics of first order phase

ix
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transitions; the hypothetical ‘cosmic strings’ are similar to magnetic field -
vortex lines in type II superconductors; the Ginzburg-Landau theory of
superfluid He® has many features in common with the theory of hadron—
meson interaction etc. When you realize the existence of this astonishing
parallelism, it is very difficult not to think that there is something very
deep about it, that here you come across a general principle of Nature
according to which same ideas are realized on different space-time scales,
on different hierarchical ‘layers’, as a Platonist would put it. This view
puts things in a new perspective where truth is no longer ‘out there’,
but may be seen equally well in a ‘grain of sand’ as in an elementary
particle.

In this book we are going to deal with the area of theoretical physics
where the parallels between high energy and condensed matter physics
are especially strong. This area is the theory of strongly correlated low-
dimensional systems. Below we will briefly go through these parallelisms
and discuss the history of this discipline, its main concepts, ideas and
also the features which excite interest in different communities of physi-
cists.

The problems of strongly correlated systems are among the most difficult
problems of physics we are now aware of. By definition, strongly correlated
systems are those ones which cannot be described as a sum of weakly
interacting parts. So here we encounter a situation when the whole is
greater than its parts, which is always difficult to analyse. The well-
known example of such a problem in particle physics is the problem of
strong interactions — that is a problem of formation and structure of
heavy particles — hadrons (with proton and neutron being the examples)
and mesons. In popular literature, which greatly influences minds outside
physics, one may often read that particles constituting atomic nuclei
consist in their turn of ‘smaller’, or ‘more elementary’, particles called
quarks, coupled together with gluon fields. However, invoking images
and using language quite inadequate for the essence of the phenomenon
in question this description more confuses than explains. The confusion
begins with the word ‘consist’ which here does not have the same meaning
as when we say that a hydrogen atom consists of a proton and an electron.
-This is because a hydrogen atom is formed by electromagnetic forces
and the binding energy of the electron and proton is small compared
to their masses: E ~ —aZm,c?, where a = e2/hc =~ 1/137 is the fine
structure .constant and m, is the electron mass. The smallness of the
dimensionless coupling constant a obscures the quantum character of
electromagnetic forces, yielding a very small cross section for processes of
transformation of photons into electron—positron pairs. Thus « serves as a
small parameter in a perturbation scheme where in the first approximation
the hydrogen atom is represented as a system of just two particles. Without
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small « quantum mechanics would be a purely academic discipline.” One
cannot describe a hadron as a quantum mechanical bound state of quarks,
however, because the corresponding fine structure constant of the strong
interactions is not small: ag ~ 1. Therefore gluon forces are of essentially
quantum nature, in the sense that virtual gluons constantly emerge from
vacuum and disappear, so that the problem involves an infinite number of
particles and therefore is absolutely non-quantum-mechanical. It turns out,
however, that the proton and neutron have the same quantum numbers
as a quantum mechanical bound state of three particles of a certain kind.
Only in this sense can one say that a ‘proton consists of three quarks’.
The reader would probably agree that this is a very nontraditional use
of this word. So it is not actually a statement about the material content
of a proton (as a wave on a surface of the sea, it does not have any
permanent material content), but about its symmetry properties, that is to
what representation of the corresponding symmetry group it belongs.

It turns out that reduction of dimensionality may be of a great help
in solving models of strongly correlated systems. Most nonperturbative
solutions presently known (and only nonperturbative ones are needed in
physics of strongly correlated systems) are related to (1 + 1)-dimensional
quantum or two-dimensional classical models. There are two ways to relate
such solutions to reality. One way is that you imagine that reality on some
level is also two dimensional. If you believe in this you are a string theorist.
Another way is to study systems where the dimensionality is artificially
reduced. Such systems are known in condensed matter physics; these
are mostly materials consisting of well separated chains, but there are
other examples of effectively one-dimensional problems such as problems
of solitary magnetic impurities (Kondo effect) or of edge states in the
quantum Hall effect. So if you are a theorist who is interested in seeing
your predictions fulfilled during your life time, condensed matter physics
gives you a chance.

At present, there are two approaches to strongly correlated systems.
One approach, which will be only very briefly discussed in this book,
operates with exact solutions of many-body theories. Needless to say not
every model can be solved exactly, but fortunately many interesting ones
can. So this method can provide a treasury of valuable information.

The other approach is to try to reformulate complicated interacting
models in such a way that they become weakly interacting. This is the
idea of bosonization which was pioneered by Jordan and Wigner in 1928
when they established equivalence between the spin § = 1/2 anisotropic
Heisenberg chain and the model of interacting fermions (we shall discuss

* With only bodiless spirits to discuss it, for sure, because there would not be stable complex atoms
to form bodies.
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this solution in detail in the text). Thus in just two years after introduction
of the exclusion principle by Pauli it was established that in many-body
systems the wall separating bosons from fermions might become penetra-
ble. The example of the spin-1/2 Heisenberg chain has also made it clear
that a way to describe a many-body system is not unique, but is a matter
of convenience.

If the anisotropy is such that the coupling between the z-components
of spins vanishes, the fermionic model becomes noninteracting. Thus, at
least at this point, the excitation spectrum (and hence thermodynamics)
can be easely described. However, since spins are expressed in terms of the
fermionic operators in a nonlinear and nonlocal fashion, the problem of
correlation functions remains nontrivial to the extent that it took another
50 years to solve it.

The transformation from spins to fermions completes the solution only
for the special value of anisotropy; at all other values fermions interact.
Interacting fermions in (1 4 1)-dimensions behave very differently from
noninteracting ones. It turns out however, that in many cases interactions
can be effectively removed by the second transformation — in the given case
from the fermions to a scalar massless bosonic field. This transformation is
called bosonization and holds in the continuous limit, that is for energies
much smaller than the bandwidth. So at such energies the spin § = 1 /2
Heisenberg chain can be réduced to a bunch of oscillators.

The spin § = 1/2 Heisenberg chain has provided the first example
of ‘particles transmutation’. We use these words to describe a situation
when low-energy excitations of a many-body system differ drastically
from the constituent particles. Of course, there are elementary cases when
constituent particles are not observable at low energies, for example, in
crystalline bodies atoms do not propagate and at low energies we observe
propagating sound waves — phonons; in the same way in magnetically
ordered materials instead of individual spins we see magnons etc. These
examples, however, are related to the situation where the symmetry is
spontaneously broken, and the spectrum of the constituent particles is
separated from the ground state by a gap. Despite the fact that continuous
symmetry cannot be broken spontaneously in (1 + 1)-dimensions and
therefore there is no finite order parameter even at T = Q, spectral gaps
may form. This nontrivial fact, known as dynamical mass generation, was
discovered by Vaks and Larkin in 1961.

However, one does not need spectral gaps to remove single electron
excitations since they can be suppressed by overdamping occurring when
T = 0 is a critical point. In this case propagation of a single particle
causes a massive emission of soft critical fluctuations. Both scenarios will
be discussed in detail in the text.

The fact that soft critical fluctuations may play an important role in
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Fig. 1. A.I. Larkin and I. E. Dzyaloshinskii.

(1 + 1)-dimensions became clear as soon as theorists started to work
with such systems. It also became clear that the conventional methods
would not work. Bychkov, Gor’kov and Dzyaloshinskii (1966) were the
first who pointed out that instabilities of one-dimensional metals cannot
be treated in a mean-field-like approximation. They applied to such metals
an improved perturbation series summation scheme called ‘parquet’ ap-
proximation (see also Dzyaloshinskii and Larkin (1972)). Originally this
method was developed for meson scattering by Diatlov, Sudakov and
Ter-Martirosian (1957) and Sudakov (1957).

It was found that such instabilities are governed by quantum interference
of two competing channels of interaction — the Cooper and the Peierls ones.
Summing up all leading logarithmic singularities in both channels (the

parquet approximation) Dzyaloshinskii and Larkin obtained differential
~equations for the coupling constants which later have been identified as
Renormalization Group equations (Solyom (1979)). From the flow of the
coupling constants one can single out the leading instabilities of the system
and thus conclude about the symmetry of the ground state. It turned out
that even in the absence of a spectral gap a coherent propagation of
single electrons is blocked. The charge-spin separation — one of the most
striking features of a one-dimensional liquid of mteractmg electrons — had
already been captured by this approach.

The problem the diagrammatic perturbation theory could not tackle



xiv Preface

N

(\QQ 60, %(‘\
b )
a

Fig. 2. A. A. Abrikosov.

was that of the strong coupling limit. Since phase transition is not an
option in (1 + 1)-dimensions, it was unclear what happens when the
renormalized interaction becomes strong (the same problem arises for
the models of quantum impurities as the Kondo problem where similar
singularities had also been discovered by Abrikosov (1965)). The failure of
the conventional perturbation theory was sealed by P. W. Anderson (1967)
who demonstrated that it originates from what he called ‘orthogonality
catastrophy’: the fact that the ground state wave function of an electron
gas perturbed by a local potential becomes orthogonal to the unperturbed
ground state when the number of particles goes to infinity.! That was an
indication that the problems in question cannot be solved by a partial
summation of perturbation series. This does not prevent one from trying
to sum the entire series which was brilliantly achieved by Dzyaloshinskii
and Larkin (1974) for the Tomonaga—Luttinger model using the Ward
identities. In fact, the subsequent development followed the spirit of this
work, but the change in formalism was almost as dramatic as between the
systems of Ptolemy and Copernicus.

As it almost always happens, the breakthrough came from a change
of the point of view. When Copernicus put the Sun in the centre of
the coordinate frame, the immensely complicated host of epicycles was
transformed into an easily intelligeble system of concentric orbits. In a
similar way a transformation from fermions to bosons (hence the term
bosonization) has provided a new convenient basis and leads to a radical

 Particle transmutation includes orthogonality catastrophy as a particular case.
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Fig. 3. Alan Luther.

simplification of the theory of strong interactions in (1 + 1)-dimensions.

The bosonization method was conceived in 1975 independently by two

particle and two condensed matter physicists — Sidney Coleman and

Sidney Mandelstam, and Daniel Mattis and Alan Luther respectively.}

The focal point of their approach was the property of Dirac fermions

in (1 + 1)-dimensions. They established that correlation functions of

such fermions can be expressed in terms of correlation functions of a free

bosonic field. In the bosonic representation the fermion forward scattering

became trivial which made a solution of the Tomonaga—Luttinger model -
a simple exercise.

The new approach had been immediately applied to previously untreat-
able problems. The results by Dzyaloshinskii and Larkin were rederived
for short range interactions and generalized to include effects of spin.
It was then understood that the low-energy sector in one-dimensional
metallic systems might be described by a universal effective theory later
christened ‘Luttinger-’ or ‘Tomonaga-Luttinger liquid’. The microscopic
description of such a state was obtained by Haldane (1981), the original
idea, however, was suggested by Efetov and Larkin (1975). Many interest-
ing applications of bosonization to realistic quasi-one-dimensional metals
had been considered in the 1970s by many researches.

Another quite fascinating discovery was also made in the 1970s and

{ The first example of bosonization was considered eatlier by Schotte and Schotte (1969).
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Fig. 4. Victor Emery.

concerns particles with fractional quantum numbers. Such particles appear
as elementary excitations in a number of one-dimensional systems, with a
typical example being spinons in the antiferromagnetic Heisenberg chain
with half-integer spin. A detailed description of such systems will be given
in the main text; here we just present an impressionistic picture.

Imagine that you have a magnet and wish to study its excitation spec-
trum. You do it by flipping individual spins and looking at propagating
waves. Naturally, since the minimal change of the total spin projection is
JAS?] = 1 you expect that a single flip generates a particle of spin-1. In
measurements of dynamical spin susceptibility x"(w, ) an emission of this
particle is seen as a sharp peak. This is exactly what we see in conventional
magnets with spin-1 particles being magnons. )

However, in many one-dimensional systems instead of a sharp peak in
x'(w,q), we see a continuum. This means that by flipping one spin we
create at least two particles with spin-1/2. Hence fractional quantum num-
bers. However, excitations with fractional spin are subject to topological
restriction — in the given example this restriction tells us that the particles
can be produced only in pairs. Therefore one can say that the elementary
excitations with fractional spir (spin-1/2 in the given example) experience
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Fig. 5. ‘P. W. Anderson.

‘topological confinement’. Topological confinement puts restriction only on
the overall number of particles leaving their spectrum unchanged. There-
fore it should be distinguished from dynamical confinement which occurs,
for instance, in a system of two coupled spin-1/2 Heisenberg chains (see
Chapter 21). There the interchain exchange confines the spinons back to
form S = 1 magnons giving rise to a sharp single-magnon peak in the
neutron cross section which spreads into the incoherent two-spinon tail at
high energies.

An important discovery of non-Abelian bosonization was made in 1983~
4 by Polyakov and Wiegmann (1983), Witten (1984), Wiegmann (1984)
and Knizhnik and Zamolodchikov (1984). The non-Abelian approach is
very convenient when there are spin degrees of freedom in the problem.
Its application to the Kondo model done by Affleck and Ludwig in their
series of papers (see references in Part III) has drastically simplified our
understanding of the strong coupling fixed point.

The year 1984 witnessed another revolution in low-dimensional physics.
In this year Belavin, Polyakov and Zamolodchikov published their fun-
damental paper on conformal field theory (CFT). CFT provides a unified
approach to all models with gapless linear spectrum in (1 4+ 1)-dimensions.
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Fig. 6. Andreas Ludwig.

It was established that if the action of a (1 + 1)-dimensional theory is
quantizable, that is its action does not contain higher time derivatives,
the linearity of the spectrum guarantees that the system has an infi-
nite dimensional symmetry (conformal symmetry). The intimate relation
between CFT and the conventional bosonization had became manifest
when Dotsenko and Fateev represented the CFT correlation functions in
terms of correlators of bosonic exponents (1984). In the same year Cardy
(1984) and later Bldte, Cardy and Nightingale (1986) found the important
connection between finite size scaling effects and conformal invariance.

Both non-Abelian bosonization and CFT are steps from the initial
simplicity of the bosonization approach towards complexity of the theory
of integrable systems. Despite the fact that correlation functions can in
principle be represented in terms of correlators of bosonic exponents, the
Hilbert space of such theories is not equivalent to the Hilbert space of
free bosons. In order to make use of the bosonic representation one must
exclude certain states from'the bosonic Hilbert space. It is not always
convenient to do this directly; instead one can calculate the correlation
functions using the Ward identities. It is the most important result of CFT
that correlation functions of critical systems obey an infinite number of
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Fig. 7. Alexander Belavin.

the Ward identities which have the form of differential equations. Solving
these equations one can uniquely determine all multi-point correlation
functions. This approach is a substitute for the Hamiltonian formalism,
since the Hamiltonian is effectively replaced by Ward identities for correla-
tion functions. Conformally invariant systems being systems with infinite
number of conservation laws constitute a subclass of exactly solvable
(integrable) models.

After many years of intensive development the theory of strongly corre-
lated systems became a vast and complicated area with many distingushed
researchers working in it. Different people have different styles and dif-
ferent interests — some are concerned with applications and some with
technical developments. There is certainly a gap between those who de-
velop new methods and those who apply them. As an éxample we can
mention the Ising model which has been very extensively studied, but
scarcely used in applications. Meanwhile, as will be demonstrated later in
the text, this is the simplest theory among those which remain solvable
outside of criticality. '

This book is an attempt to breach the gap between mathematics of
strongly correlated systems and its applications. In our work we have
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been inspired by the idea that the theory in (1 + 1)-dimensions, though
being but a small subsector of a global theory of strongly correlated
systems, may give an insight for more important and general problems
and give the reader a better vision of ‘the Universe as a great idea’. The
reader will judge whether our attempt is successful.

In conclusion we say several words about the structure and style of
this book. The reader should keep in mind that we shall frequently and
without much discussion switch between Hamiltonian and Lagrangian
formalisms. As a consequence the same notations will stand for operators
in the first case and for number (or Grassmann number) fields in the
second case. Please beware of this and watch what formalism is used to
avoid confusion. We shall also frequently use the field theory jargon: for
example, electronic densities are often called currents. Bear in mind that
the essence of things does not depend on how they are called, and be
induigent.

The book contains three parts — in the first one we discuss the method,
in the second part describe its applications to some interesting (1 + 1)-
dimensional systems, and in the third part discuss nonlinear quantum
impurities. There are important topics which we do not cover; some
being even very important — such as applications of bosonization in more
than one spatial dimension and the boundary conformal theory. The only
reason for omitting these topics is our ignorance.
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