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Preface

This book is a revised and greatly expanded version of our book Elements of
Number Theory published in 1972. As with the first book the primary audience
we envisage consists of upper level undergraduate mathematics majors and
graduate students. We have assumed some familiarity with the material in a
standard undergraduate course in abstract algebra. A large portion of
Chapters 1-11 can be read even without such background with the aid of a
small amount of supplementary reading. The later chapters assume some
knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with
the theory of complex variables is necessary.

Number theory is an ancient subject and its content is vast. Any intro-
ductory book must, of necessity, make a very limited selection from the
fascinating array of possible topics. Our focus is on topics which point in the
direction of algebraic number theory and arithmetic algebraic geometry. By a
careful selection of subject matter we have found it possible to exposit some
rather advanced material without requiring very much in the way of technical
background. Most of this material is classical in the sense that is was dis-
covered during the nineteenth century and earlier, but it is also modern
because it is intimately related to important research going on at the present
time.

In Chapters 1-5 we discuss prime numbers, unique factorization, arith-
metic functions, congruences, and the law of quadratic reciprocity. Very little
is demanded in the way of background. Nevertheless it is remarkable how a
modicum of group and ring theory introduces unexpected order into the
subject. For example, many scattered results turn out to be parts of the answer
to a natural question: What is the structure of the group of units in the ring
Z/nZ?
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Reciprocity laws constitute a major theme in the later chapters. The law
of quadratic reciprocity, beautiful in itself, is the first of a series of reciprocity
laws which lead ultimately to the Artin reciprocity law, one of the major
achievements of algebraic number theory. We travel along the road beyond
quadratic feciprocity by formulating and proving the laws of cubic and
biquadratic Teciprocity. In preparation for this many of the techniques of
algebraic number theory are introduced; algebraic numbers and algebraic
integers, finite ficlds, splitting of primes, etc. Another important tool in this
investigation (and in others!) is the theory of Gauss and Jacobi sums. This
material is covered in Chapters 6-9. Later in the book we formulate and prove
the more advanced partial generalization of these results, the Eisenstein
reciprocity law.

A second major theme is that of diophantine equations, at first over finite
fields and later over the rational numbers. The discussion of polynomial
equations over finite fields is begun in Chapters 8 and 10 and culminates in
Chapter 11 with an exposition of a portion of the paper “ Number of solutions
of equations over finite fields” by A. Weil. This paper, published in 1948, has
been very influential in the recent development of both algebraic geometry
and number theory. In Chapters 17 and 18 we consider diophantine equations
over the rational numbers. Chapter 17 covers many standard topics from
sums of squares to Fermat’s Last Theorem. However, because of material
developed earlier we are able to treat a number of these topics from a novel
point of view. Chapter 18 is about the arithmetic of elliptic curves. It dif-
fers from the earlier chapters in that it is primarily an overview with many
definitions and statements of results but few proofs. Nevertheless, by con-
centrating on some important special cases we hope to convey to the reader
something of the beauty of the accomplishments in this area where much work
is being done and many mysteries remain.

The third, and final, major theme is that of zeta functions. In Chapter 11 we
discuss the congruence zeta function associated to varieties defined over finite
fields. In Chapter 16 we discuss the Riemann zeta function and the Dirichlet
L-functions. In Chapter 18 we discuss the zeta function associated to an
algebraic curve defined over the rational numbers and Hecke L-functions.
Zeta furetions compress a large amount of arithmetic information into a
single function and make possible the application of the powerful methods of
analysis to number theory.

Throughout the book we place considerable emphasis on the history of
our subject. In the notes at the end of each chapter we give a brief historical
sketch and provide references to the literature. The bibliography is extensive
containing many items both classical and modern. Our aim has been to
provide the reader with a wealth of material for further study.

There are many exercises, some routine, some challenging. Some of the
exercises supplement the text by providing a step by step guide through the
proofs of important results. In the later chapters a number of exercises have
been adapted from results which have appeared in the recent literature. We
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hope that working through the exercises will be a source of enjoyment as well
as instruction.

In the writing of this book we have been helped immensely by the interest
and assistance of many mathematical friends and acquaintances. We thank
them all. In particular we would like to thank Henry Pohlmann who insisted
we follow certain themes to their logical conclusion, David Goss for allowing
us to incorporate some of his work into Chapter 16, and Oisin McGuiness
for his invaluable assistance in the preparation of Chapter 18. We would
like to thank Dale Cavanaugh, Janice Phillips, and especially Carol Ferreira,
for their patience and expertise in typing large portions of the manuscript.
Finally, the second author wishes to express his gratitude to the Vaughn
Foundation Fund for financial support during his sabbatical year in
Berkeley, California (1979/80).

July 25, 1981 Kenneth Ireland
Michael Rosen
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Chapter |
Unique Factorization

The notion of prime number is fundamental in number
theory. The first part of this chapter is devoted to proving
that every integer can be written as a product of primes
in an essentially unique way.

After that, we shall prove an analogous theorem in the
ring of polynomials over a field.

On a more abstract plane, the general idea of unique
Jactorization is treated for principal ideal domains.

Finally, returning from the abstract to the concrete, the
general theory is applied to two special rings that will be
important later in the book.

§1 Unique Factorization in Z

As a first approximation, number theory may be defined as the study of the
natural numbers 1, 2, 3, 4, . . . . L. Kronecker once remarked (speaking of
mathematics generally) that God made the natural numbers and all the rest
is the work of man. Although the natural numbers constitute, in some sense,
the most elementary mathematical system, the study of their properties has
provided generations of mathematicians with problems of unending fascina-
tion. .

We say that a number a divides a number b if there is a number ¢ such
that b = ac. If a divides b, we use the notation a|b. For example, 2|8, 3|15,
but 6 421. If we are given a number, it is tempting to factor it again and
again until further factorization is impossible. For example, 180 = 18 x 10
=2x9x%x2x5=2x3x3x 2 x 5. Numbers that cannot be factored
further are called primes. To be more precise, we say that a number p is a
prime if its only divisors are 1 and p. Prime numbers are very important
because every number can be written as a product of primes. Moreover,
primes are of great interest because there are many problems about them
that are easy to state but very hard to prove. Indeed many old problems
about primes are unsolved to this day.

The first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, ....One may ask if there are infinitely many prime numbers. The answer
is yes. Euclid gave an elegant proof of this fact over 2000 years ago. We shall
give his proof and several others in Chapter 2. One can ask other questions

1



2 1 Unique Factorization

of this nature. Let n(x) be the number of primes between 1 and x. What can
be said about the function n(x)? Several mathematicians found by experiment
that for large x the function n(x) was approximately equal to x/In(x). This
assertion, known as the prime number theorem, was proved toward the end
of the nineteenth century by J. Hadamard and independently by Ch.-J. de la
Vallé Poussin. More precisely, they proved

n(x) _
oo X/IN(X)

Even from a small list of primes one can notice that they have a tendency
to occur in pairs, for example, 3and 5, 5 and 7, 11 and 13, 17 and 19. Do
there exist infinitely many prime pairs? The answer is unknown.

Another famous unsolved problem is known as the Goldbach conjecture
(C. H. Goldbach). Can every even number be written as the sum of two
primes? Goldbach came to this conjecture experimentally. Nowadays
electronic computers make it possible to experiment with very large numbers.
No counterexample to Goldbach’s conjecture has ever been found. Great
progress toward a proof has been given by I. M. Vinogradov and L. Schnirel-
mann. In 1937 Vinogradov was able to show that every sufficiently large odd
number is the sum of three odd primes.

In this book we shall not study in depth the distribution of prime numbers
or “additive” problems about them (such as the Goldbach conjecture).
Rather our concern will be about the way primes enter into the multiplicative
structure of numbers. The main theorem along these lines goes back essen-
tially to Euclid. It is the theorem of unique factorization. This theorem is
sometimes referred to as the fundamental theorem of arithmetic. It deserves
the title. In one way or another almost all the results we shall discuss depend
on it. The theorem states that every number can be factored into a product of
primes in a unique way. What uniqueness means-will be explained below.

As an illustration consider the number 180. We have seen that 180 =
2x2x3x3x5=2%x 3% x 5 Uniqueness in this case means that
the only primes Eimdmg 180 are 2, 3, and 5 and that the exponents 2, 2, and
1 are uniquely determined by 180.

Z will denote the ring of integers, i.e., theset 0, +1, +2, +3, ..., together
with the usual definition of sum and product. It will be more convenient to
work with Z rather than restricting ourselves to the positive integers. The
notion of divisibility carries over with no difficulty to Z. If p is a positive
prime, —p will also be a prime. We shall not consider 1 or — 1 as primes even
though they fit the definition. This is simply a useful convention. Note that
1 and —1 divide everything and that they are the only integers with this
property. They are called the units of Z. Notice also that every nonzero
integer divides zero. As is usual we shall exclude division by zero.

There are a number of simple properties of division that we shall simply
list. The reader may wish tc supply the proofs.
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(1) ala,a # 0.

(2) Ifalband b|a, thena = +b.
(3) If a|b and bjc, then a|c.

(4) Ifalb and a|c, then a|b + c.

Let n € Z and let p be a prime. Then if n is not zero, there is a nonnegative
integer a such that p*|n but p°*! ¥ n. This is easy to see if both p and n are
positive for then the powers of p get larger and larger and eventually exceed n.
The other cases are easily reduced to this one. The number g is called the
order of n at p and is denoted by ord, n. Roughly speaking ord, n is the
number of times p divides n. If n = 0, we set ord, U = c0. Notice that
ord, n = 0 if and only if (iff) p ¥ n.

Lemma 1. Every nonzero integer can be written as a product of primes.

PROOF. Assume that there is an integer that cannot be written as a product of
primes. Let N be the smallest positive integer with this property. Since N
cannot itself be prime we must have N = mn, where 1 < m, n < N. How-
ever, since m and n are positive and smaller than N they must each be a
product of primes. But then so is N = mn. This is a contradiction.

The proof can be given in a more positive way by using mathematical
induction. It is enough to prove the result for all positive integers. 2 is a
prime. Suppose that 2 < N and that we have proved the result for all
numbers m such that 2 < m < N. We wish to show that N is a product of
primes. If N is a prime, there is nothing to do. If N is not a prime, then
N = mn, where 2 < m, n < N. By induction both m and n are products of
primes and thus so is N. W]

By collecting terms we can write n = p{'p% - - - p2~, where the p; are
primes and the a; are nonnegative integers. We shall use the following
notation:

n=(— 1)”(” n pn(p),
b4

where &) = 0 or | depending on whether » is positive or negative and
where the product is over all positive primes. The exponents a(p) are non-
negative integers and, of course, a(p) = 0 for all but finitely many primes.
Forexample, ifn = 180, we have g(n) = 0,a(2) = 2,a(3) = 2,and a(5) = 1,
and all other a(p) = 0.

We can now state the main theorem.

Theorem 1. For every nonzero integer n there is a prime factorization
n=(- ‘):(n) n pa(m’
14

with the exponents uniquely dctermined by n. In fact, we have a(p) = ord, n.



4 1 Unique Factorization

The proof of this theorem is not as easy as it may seem. We shall postpone
the proof until we have established a few preliminary results.

Lemma 2. If a,beZ and b > 0, there exist q,r € Z such that a = ¢b + r
with0 < r < b.

Proor. Consider the set of all integers of the forma — xb with x € Z. This set
includes positive elements. Let r = a — gb be the least nonnegative element *
in this set. We claim that0 < r < b.Ifnot,r = a — ¢gb.> bandso0 < a —
(g + 1)b < r, which contradicts the minimality of r. a
Definitien. If a,, a,, ..., a, € Z, we define (a,, a,, ..., a,) to be the set of
all integers of the form a,x, + a,x, + --- + a,x, with x;, x5, ..., x, € Z.

Let A = (ay, a,, . . ., a,). Notice that the sum and difference of two
elements in A are again in 4. Also, if a € 4 and r € Z, then ra € A. In ring-
theoretic language, 4 is an ideal in the ring Z.

Lemma 3. If a, b € Z, then there is a d € Z such that (a, b) = (d).

ProoF. We may assume that not both ¢ and b are zero so that there are
positive elements in (a, b). Let d be the smallest positive element in (a, b).
Clearly (d) < (a, b). We shall show that the reverse inclusion also holds.
Suppose that ¢ € (a, b). By Lemma 2 there exist integers ¢ and r such that
¢ = gd + r with 0 < r < d. Since both ¢ and d are in (a, b) it follows that
= ¢ — qd is also in (a, b). Since 0 < r < d we must have 7 « 0. Thus
¢ = qd e(d). -0

Definition. Let a, b Z. An integer d is called a greatest common divisor of
a and b if d is a divisor of both a and b and if every other common divisor of
a and b divides d.

Notice that if ¢ is another greatest common divisor of @ and b, then we
must have c|dand d|c and so ¢ = +d. Thus the greatest common divisor of
two numbers, if it exists, is determined up to sign.

As an example, one may check that 14 is a greatest common divisor of
42 and 196. The following lemma will establish the existence of the greatest
common divisor, but it will not give a method for computing it. In the
Exercises we shall outline an efficient method of computation known as the
Euclidean algorithm.

Lemma 4. Let a, b€ Z. If (a, b) = (d) then d is a greatest common divisor of
aandb.

ProoF. Since a € (d) and b € (d) we see that d is a common divisor of a and b.
Suppose that ¢ is a common divisor. Then ¢ divides every number of the form
ax + by. In particular c|d. |
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Definition. We say that two integers a and b are relatively prime if the only
common divisors are + 1, the units.

It is fairly standard to use the notation (a, b) for the greatest common
divisor of a and b. The way we have defined things, (a, b) is a set. However,
since (a, b) = (d) and d is a greatest common divisor (if we require d to be
positive, we may use the article zhe) it will not be too confusing to use the
symbol (a, b) for both meanings. With this convention we can say that @ and
b are relatively prime if (a, b)) = 1.

Proposition 1.1.1. Suppose that a|bc and that (a, b) = 1. Then a|c.

PROOF. Since (g, b) = 1 there exist integers r and s such that ra + sb = 1.
Therefore, rac + sbe =-c. Since a divides the left-hand side of this equation
we have ajc. | O

This proposmon is false if (a, b) # 1. For example, 6|24 but 643 and
6.48.

Corollary 1. If p is a prime and p|bc, then either p|b or p|c.

ProOF. The only divisors of pare +1and +p. Thus(p, b) = 1orp;i.e.,either
plbor pand b are relatively prime. If p| b, we are done. If not, (p, b) = 1 and
so, by the proposition, p|c. O

We can state the corollary in a slightly different form that is often useful :
If p is a prime and p 4 b and p ¥ ¢, then p 4 bc.

Corollary 2. Suppose that p is a prime and that a,be Z. Then ord,ab=ord a
+ ord, b.

PROOF. Let « = ord, a and f = ord, b. Then a = p*c and b = pd, where
pXcandptd. Then ab = p**Pcd and by Corollary 1p  cd. Thusord, ab =
a+ f=ord,a+ ord, b. ad

We are now in a position to prove the main theorem.
Apply the function ord, to both sides of the equation

n = (=1 [ po
4

and use the property of ord, given by Corollary 2. The result is
ord, n = &(n) ord,(--1) + Y a(p) ord(p).

P
Now, from the definition of ord, we have ord,(—1) = 0 and ord (p) = 0
if p # gand 1if p = ¢. Thus the right-hand side collapses to the single term
a(g), i.., ord, n = a(g), which is what we wanted to prove.
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It is to be emphasized that the key step in the proof is Corollary 1: namely,
if plab, then p|a or p|b. Whatever difficulty there is in the proof is centered
about this fact.

-
~

§2 Unique Factorization in k[ x]

The theorem of unique factorization can be formulated and proved in ‘more
general contexts than that of Section 1. In this section we shall consider the
ring k[x] of polynomials with coefficients in a field k. In Section 3 we shall
consider principal ideal domains. It will turn out that the analysis of these
situations will prove useful in the study of the integers.

If f, g € k[x], we say that f divides g if there is an 4 € k[x] such that
g=/sh

If deg f denotes the degree of f, we have deg fg = deg f + deg g. Also,
remember that deg f = 0 iff f is a nonzero constant. It follows that f|g and
g\ fiff f = cg, where ¢ is a nonzero constant. It also follows that the only
polynomials that divide all the others are the nonzero constants. These are
the units of k[x]. A nonconstant polynomial p is said to be irreducible if
¢|p implies that g is cither a constant or a constant times p. Irreducible
polynomials are the analog of prime numbers.

Lemma 1. Every nonconstant polynomial is the product of irreducible poly-
nomials.

ProOF: The proof is by induction on the degree. It is easy to see that poly-
nomials of degree 1 are irreducible. Assume that we have proved the resuit
for all polynomials of degree less than nand that deg /' = n. If fisirreducible,
we are done YOtherwise f = gh, where 1 < deg g, deg h < n. By the induc-
tion assumption both g and 4 are products of irreducible polynomials. Thus
sois f = gh. (]

It is convenient to define monic polynamial. A polynomial fis called monic
if its leading coefficient is 1. For example, x> + x — 3and x> — x? + 3x +
17 are monic but 2x*> — 5 and 3x* + 2x% —-1 are not. Every polynomial
(except zero) is a constant times a monic polynomial. '

Let p be a monic irreducible polynomial. We define ord, f to be the
integer a defined by the property that p°| f but that p°* ! ¥ f. Such an integer
must exist since the degree of the powers of p gets larger and larger. Notice
thatord, f = 0iff ptf.

Theorem 2. Let f € k[x]. Then we can write
f =c n p"("),
14



