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FACTORS AFFECTING PUMP SELECTION FOR TRANSFERRING AND METERING
SLURRY-TYPE FUELS

Michael Dillon, William Donahue, and J. David Bourke
: Robbins & Myers, Inc.
Fluids Handling Division
Springfield, Ohio

Introduction

Several factors affect the selection of pumps for use in
handling composite or slurry type fuels. While capacity and
differential pressure are the primary determinants of pump selection,
the rheology and abrasive nature of slurry fuels effectively modify
capacity and pressure on an absolute basis. Viscosity is a main
determinant of maximum speed, the available NPSH, volumetric
efficiency, slip, and power consumption. While knowledge of these
factors is important, it is also crucial to realize that a pump and
pipe system subjects the rheology of slurry fuels to a set of dynamic
variables. In the selection df a pump and pipe system for slurry
fuels, data must be considered which are obtained through analysis
that considers this dynamism,

Depending on the percentage, size, and condition of solids,
pipe size, and many other factors, slurry fuels generally exhibit
non-Newtonian, homogeneous characteristics. A variety of data
collected by analyzing coal/alcohol and coal/water mixtures shows
the diversity of results expected from the wide range of possible
variables. Standard equations may be used for friction loss
calculations in piping, as long as the user recognizes. the marginal
value over a relevant range of pipeline velocities caused by process
or material variations. Data points from a standard rotational
viscometer can be used to extrapolate an approximate "true" viscosity
related to the dynamic conditions that affect pump performance,
piping friction loss, and equipment life.

Other factors affecting pump selection include abrasion,
corrosion, and temperature. These factors can be controlled by
proper selection of materials of.construction. An attempt to classify
the abrasive effect of coal slurries, from varying locales is difficult
Abrasives may look alike, feel alike, and seem to have many similar
properties yet have entirely different wear characteristics. Some
broad classifications and guidelines are possible, primarily related
to pump speed and materials of construction. With most metals, there
is an inverse relationship between corrosion resistance and abrasion
resistance. The use of elastomer parts solves much of this dilemma.
Elastomers, however, can be attacked by various chemicals and swell
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or deteriorate in the process. Temperature can cause similar problems
Physical properties stability is the most cruc1a1 factor in elastomer
selection.

Viscosity

For proper pump selection, the estimation of pump and pipe
system pressures of NPSH available usually is difficult when handling
abrasive slurries, since they normally fall into the category of
non-Newtonian fluids. TFull scale tests are usually costly and time-
consuming, and in many cases only a small sample of the proposed slurry
fuel is available.

The NPSH required by any particular pump model at a given speed
is usually provided by data in manufacturers' literature. In a
positive displacement pump, until-the rotor, piston, lobe, gear, or
vane closes behind the fluid and applies positive pressure to it,
the pump can only create a void. The amount of fluid to flow into the
void will (much like any orifice) depend on the fluid viscosity,
differential pressure across the opening, and an entrance loss or
K factor that reduces the theoretical flow (due to turbulence,
friction, vena contracta, etc. ). Assuming a negligible fluid vapor
pressure and negligible flooded head or friction losses at the punmp
suction, the maximum differential pressure the pump could create by
opening a void would be approximately 14.7 psi at sea level. Under
these specific conditions, as long as the pressure drop between the
suction port and the pumping element entrance does not exceed 1h.T7 psi,
fluid will fill the void and the pump flow will be full displacement.
If the pressure drop between the suction port and the pump element
entrance requires a pressure greater than 14.T psi, cavitation occurs
as the fluid pressure drops below the vépor pressure. A portion of
the void is filled with fluid vapor which is condensed in the pump
after the positive pressure is applied. The result is a pulsating,
noisy, erratic flow and deviation from the straight line "capacity
versus speed" curve. Obviously, the more viscous the fluid, the
higher the pressure drop (or the lower the flow rate) at which
cavitation will occur. Therefore, for a given pump model using known
Newtonian fluids of various viscosities at various NPSHs, it is
possible for a manufacturer to develop curves which indicate the ,
maximum speed the pump should operate at a given NPSH available. Pump
manufacturers generally have performed tests to determine additional
pump drive or horsepower requirements for Newtonian viscosities. The
only portion of a "horsepower versus differential pressure" curve that
changes with the addition of viscosity is a part of the constant
friction portion (Figure 1). Pump manufacturers generally make
available tables indicating maximum pump speed compatible with
viscosities at given NPSH requirements and a horsepower additive table.
These data are based on Newtonian liquids and are not applicable to
non-Newtonian fluids. The Brookfield rotational viscometer can be
used with various spindles and spindle speeds to determine the degree
of non-Newtonian properties (Figure 2). Slurries are almost always
non-Newtonian and will either increase or decrease their viscosity as
they are "worked" by the shearing action of a pump and pipe system.
There is usually an inverse relationship between shear rate and

2 Dillon



viscosity in slurry rheology although this rate is rarely linear.
Most homogeneous slurries tend to be thixotropic--the viscosity
decreases as the rate of shear is increased and as the length of time
they are sheared increases. In these instances, you would find that
even though the velocity in the pipe was the same at two different.
points, the viscosity of the slurry at one point would be higher

at that moment than at a point somewhat farther down the line,
because it has been subjected to shearing stresses of flow for a
lesser time interval. This time-dependence of slurry viscosity is
obviously troublesome when it comes to predicting pipeline specifi-
cations, or for that matter laboratory testing. It rules out data
obtained through the recirculation of slurries in test loops.

The non-Newtonian nature of the slurry fuels tested in our
laboratory is shown in Figure 3. By plotting shear rate against
shear stress and entering the data obtained with a Hercules viscometer
onto a curve, the non-Newtonian nature of these fuels is evident. The
"hysteresis loop" demonstrated by these fuels is true to the nature
of thixotropic liquids. Once the material has been subjected to
shearing, any additional shearing (even at lowered shear rates) will
continue to reduce the viscosity of the material. Plotting a Newtonian
liquid would give us a stright line and viscosity would be linearly
related to shear rate. It is the time-dependence of thixotropic
materials that causes this "looping" effect.

In a practical sense, for pump selection we can ignore this time-
dependence on viscosity and treat the materials as a near-Newtonian
liquid. Although using the high viscosity derived from a "first pass"
rate of shear will oversize our selected pump and pipe system to a
small degree, this oversizing is necessary, as explained later, to
counteract the effect of abrasion on pump life.

Probably one of the most convenient formulas for the prediction
of non-Newtonian flow is the Power Law originally proposed by Ostwald.
Wheré Newton's law for true fluids stated that the shear stress varied
directly with shear rate, the Power Law states that for thixotropic,
pseudoplastic, or dilatent fluids the shear stress varies directly
as the shear rate to some power "n". That power factor is equal to 1
for Newtonian or true fluids, is greater than 1 for dilatent fluids,
and less than 1 for pseudoplastic or thixotropic fluids (Figure 4).

Any function raised to a power will produce a straight line on
a log-log graph. By plotting viscometer readings (either rotation or
capillary or both) on such a curve, one can extrapolate to the nominal
shear rate and pick off the apparent viscosity that can be used in
the Fanning equation to estimate pipe friction losses. If sufficient
material is available for a pump test, this curve can be verified or
altered by adding additional data points (Figure 5). These points
are gathered by running what is termed a cavitation curve. Using
Newtonian fluids of varying viscosities, such as silicone oil, it
is simple to develop characteristic curves of point of deviation from
the straight line capacity versus speed curve and the shape of the
curve for each viscosity at a given NPSH.
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When a non-Newtonian fluid is run under the same conditioms, it is
usually found that it matches none of ine Newtonian curves, but it
behaves like one viscosity at speed A, another viscosity at speed
B, and a third viscosity at speed C (Figure 6). Knowing the average
shear rate in the pump at those speeds, we then have additional points
to affirm the fluid's adherence to the Power Law, and additional
confidence that the pipe friction calculations will effect a practical
degree of accuracy.

If the application warrants it and sufficient fluid is available,
the fluid analysis may be further verified by checking the pressure
drop through one pipe size and calculating the apparent viscosity
using the Poiseuille formula. In 1965, Penkala and Escarfail? showed
the relevance of rotational viscometer readings to pipe friction
losses using the Poiseuille formula. Their data were plotted on a log-
log analysis chart because not only were two different types of
rotational viscometers used in gathering the data for three different
slurries, (60% solids, 51% solids, and 45% solids), but these tests
were run through three different pipe sizes (Figure 7). The grouping
of the data points tends to confirm the redundancy of tests in more
than one pipe size for friction estimations (at least in the shear
‘rate range of most piping systems). The results from three different
types of viscosity measurement approximate each other to a degree
that would lend confidence to pump selection, particularly in the
shear rate range of less than 200 seconds™l.

Similar tests to these were performed on coal slurries in our
laboratory using a Brookfield rotating disk viscometer, a Hercules
high shear coaxial cylinder viscometer, and pipe data from the test
facility outlined in Figure 8. Samples of these data are illustrated
in Figure 9. A linear extrapolation of Brookfield data is relevant
to predicting actual viscosity up to approximately 1,000 inverse
seconds, in an much as an accuracy range of 200 cps can be attained.
Since we are dealing with rotary positive displacement pumps, this
accuracy is more than adequate. In fact, a confidence band of several
hundred centipoise would be adequate for most pump selection
calculations.

Worth showing at this time is the velocity profile within a pipe
for various values of the factor "n" (Figure 10). For a true fluid
where "n" equals 1, the flow pattern for streamline flow is parabolic,
with the maximum velocity at the center of the pipe double that of the

average velocity. For a dilatent fluid (where "n" is greater than 1)

the larger the number, the closer the velocity approaches that of the
purely theoretical perfect dilatent where "n" equals infinity. That
shape is conical rather than parabolic and the maximum velocity at the
center of the pipe is three times the average. This dilatent or
rheopectic phenomena ("n" greater than 1) does not normally exist in
slurries. On the other hand, the perfect pseudoplast, where "n" = 0,
would flow as a solid plug, with no difference in velocity from the
pipe walls to the center of the pipe. Even though a perfect pseudo-
plast could not possibly exist, note that for a pseudoplastic or
thixotropic slurry with a power factor "n" equal to .33, there is no
appreciable difference in velocity over the inner 1/3 of the pipe, so
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