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PREFACE

This book is intended for use as a supplemental tool for courses in engineering
mathematics, applied ordinary and partial differential equations, vector analysis,
applied complex analysis, and other advanced courses in which Mathematica
is used. My goal in writing this text was to prepare a supplementary book that
could be used to guide students through a series of laboratory exercises that
would do the following:

e present cogent applications of the mathematics

e demonstrate the effective uses of the computational tool (in this case, Math-
ematica) to do the mathematics

e provide discussion of the results obtained by using Mathematica
e stimulate thought about and analysis of additional applications

Each chapter has been written so that the material it contains may be cov-
ered in a typical laboratory session of about 1-1/2 to 2 hours. The goals for every
laboratory are stated at the beginning of each chapter. Mathematical concepts
are then discussed within a framework of abundant engineering applications and
problem-solving techniques using Mathematica. I have tried to keep the Mathe-
matica instruction per se to a minimum, but have included enough material to
get students up and running quickly.

Each chapter is followed by a set of exercises. Many of these are exploratory
in nature and are intended to serve as a starting point for a student’s mathe-
matical experimentation. In addition, since most of the exercises can be solved

L Mathematica is a registered trademark of Wolfram Research, Inc.
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XiV  PREFACE

in more than one way, I have not provided an answer key for the student or
instructor. Students should be encouraged to develop their own problem-solving
skills with Mathematica and not just look for the “correct” answer.

Colleges and universities across the nation have been carefully re-examining
the ways in which undergraduate mathematics is taught and done. The advent
of computer algebra systems such as Mathematica, which can perform elabo-
rate symbolic calculations, in conjunction with the rapidly expanding power of
computers to function as graphic visualization devices have forced a critical re-
thinking of how much of what is called higher mathematics ought to be taught
and done.

The calculus reform movement has already borne much fruit. As it matures,
the same style of innovative thinking must subsequently be brought to bear
on virtually all the mathematics courses taken by upperclassmen. While core
mathematics has been the object of substantial national attention, less emphasis
has been placed on adapting advanced courses to the technology and the student
expectations it brings with it.

For these reasons, one of the most promising areas in which to exploit
computation is in “engineering mathematics,” a rubric which covers applied or-
dinary and partial differential equations, vector analysis, and applied complex
analysis in courses normally taken junior and senior year. One approach to this
problem is to write new textbooks with clearly-woven computational threads.
I have taken a different approach by presenting discussion that is compatible
with a broad range of engineering mathematics texts, as well as smaller, more
specialized texts in differential equations and complex variables.

Although it might be desirable to make such a laboratory text indepen-
dent of any particular software package, this goal is not yet in sight. There are
simply too many differences in package front-ends and capabilities. In my view,
a laboratory text must deal concretely with the details of a specific package.
For a number of reasons, I have selected Mathematica as the computer algebra
package for this text. Mathematica possesses a wealth of features which make
it an excellent laboratory tool for engineering mathematics. In addition, Math-
ematica is available on a broad array of platforms—386 PCs, Macintoshes, Sun
Sparcstations, IBM RS/6000s, etc.—and is found at many universities.

I would like to thank many, many people for their help while I prepared
this book. My wife Julia alternately encouraged and cajoled me during the many
months of its writing. Colonel Frank Giordano provided numerous useful insights
and kept more than one wolf at bay. Dr. Norbert Carballo provided timely advice
regarding the true purpose of the effort. Prof. Heidi A. Pattee of Oregon State
University carefully read the manuscript and offered a myriad of suggestions
which substantially improved the book. My editor, Maggie Lanzillo, was simply
wonderful.

John S. Robertson
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CHAPTER

INTRODUCTION

1.1 GOALS

a. To become familiar with the basic syntax of Mathematica.
b. To plot two-dimensional graphs.
c. To plot three-dimensional surfaces.

1.2 ABOUT Mathematica

Mathematica is a powerful symbolic algebra tool that provides an extraordinarily
rich variety of symbolic, graphical and numerical capabilities to anyone working
with engineering mathematics.

Mathematica

FIGURE 1.1
Clicking on this (or a similar) icon starts Mathematica on the Macintosh.

Mathematica sessions are started differently on different machines. For ex-
ample, on the Macintosh, you can click on a Mathematica icon, as shown in Fig.
1.1. This will open a Mathematica notebook into which you can start typing.

1



2 ENGINEERING MATHEMATICS WITH MATHEMATICA

On a UNIX-based workstation, such as an IBM RISC System 6000, you would
type math at the command prompt. In this case you will see the following text
in your window:!

Mathematica 2.0 for IBM RISC System 6000
Copyright 1988-91 Wolfram Research, Inc.
-- X11 windows graphics initialized --

In[1]:=

Refer to the Local Guide that came with your Mathematica implementation on
starting Mathematica on other computer systems.?

Mathematica syntax, while initially a bit strange, is fairly easy to learn and
remarkably consistent. As you work with it, keep the following rules in mind:

e Mathematica is case-sensitive.

e All Mathematica functions are capitalized.

e Function arguments are always delineated with square brackets, i.e. [...].
e Lists are always delineated with curly brackets, i.e. {...}.

e Variable ranges (for integration, plotting, and counting) are always built
with lists.

e A double question mark 77 followed by the Mathematica function name will
elicit a short help message. This is useful only if you already understand the
command. There is no substitute for referring to the Mathematica book® for
definitive guidance on a particular function or operation.

1.3 BASIC ALGEBRA AND
CALCULUS OPERATIONS

There are a few fundamental operations which must be mastered early on if
the power of Mathematica is to be put to good use in the laboratory exercises.
Consider the following expression:

1 As of this writing, notebooks are available for major UNIX platforms. With the release
of Mathematica Version 2.2, you can also obtain a window directly to the Mathematica kernel
on the Macintosh. Notebooks, though, are easier to manage, and their use should be de rigeur
when available.

2In this and all subsequent chapters, input and output will be confined between the
upward- and downward-facing horizontal brackets as shown in the above example. In addition,

within a section, statements will always be consecutively numbered beginning with 1, e.g.
In[1]:= and Out[1]=.

3Stephen Wolfram, Mathematica: A system for doing mathematics by computer, Addison-
Wesley, Redwood City, CA, 1991.



INTRODUCTION 3

—
In[1]:= (x + y)~2

2
Out[1]= (x + y)

In this example, x and y are variables and the ~ operator denotes exponentiation.
Mathematica returns the result in so-called display form, not unlike the way we
would write the result down on paper. Input lines are always numbered like
In[n] and output lines like Out [n] where n is the sequential number of the line
beginning with the n = 1 for the current Mathematica session.

Mathematica can be directed to expand the result with the Expand [] func-
tion:

In[2]:= Expand[%]

2 2
Out[2l=x +2xy +y

The % symbol stands for the output of the immediately previous calculation. In
this example, % is equivalent to Out [1]. This result of the last command can be
further manipulated, say, by subtracting 4 x y from it:

In(3l:=% -4xy

Out [3]

(]
"

-“2xy+y

Note that spaces between symbols designates implied multiplication. The use of
the asterisk * makes the intention to multiply explicit, i.e., 4*x*y is equivalent
to4d x vy.

In any case, to factor the result shown in Qut[3] we use the Factor[]
function:

In[4] := Factor[%]

2
Out[4]= (-x + y)




