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xii Preface

which are structured to relate to the examples and material in the text.
Each exercise set has been designed to include a reasonable number of
problems which the student can master without difficulty in order to fix
in his mind the basic concepts under study. As a result, the student will
quickly gain some degree of confidence. The relevance of the subject
matter to the engineering technologies is indicated by the illustrative appli-
cations in the examples, the material of the text, and the exercises. These
applications require no prior knowledge on the part of the student.

Chapter 0, not necessarily intended as part of a formal course, provides
a very brief review of some fundamental arithmetic operations and geo-
metrical concepts; it has been included for the convenience of the student.
With the exception of Chapter 0, each chapter contains a review section
which includes a programmed-style review covering essential mathemat-
ical concepts, and numerous review exercises.

Answers to the odd-numbered problems, all review exercises, and all
slide-rule problems appear at the end of the book.

By relegating the unusually thorough descriptions of slide-rule opera-
tions to the appendix, they may be presented at any convenient point in
the mathematics program without interrupting the continuity of the text.
They also form a convenient reference for the student.

Available from the publisher is an extensive instructor’s manual which
contains answers to all exercises and detailed solutions to a great many of
them, including all applied problems.

We express our thanks to Keuffel and Esser Company for the photo-
graphs, material, and exercises on the slide rule which have been adapted
to our needs and appear in the appendix; and to Cary Baker and Bob
Duchacek and the entire Prentice-Hall staff for their cooperation and
assistance.

Finally, we express our most grateful appreciation to Professor Frank
Kocher of the Department of Mathematics of The Pennsylvania State Uni-
versity whose objective critique of the entire manuscript and important
suggestions for its improvement are in evidence throughout the text.

RicHARD S. PauL

M. LEONARD SHAEVEL
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preliminary topics

0-1
INTRODUCTION

Although it is assumed that you have had some prior preparation in
mathematics, a brief review of certain arithmetical operations and selected
geometrical concepts may be useful. This chapter provides such a review
for your convenience; it is not meant to be a summary of all prerequisites
for a course of this type. The topics covered are those to which an imme-
diate second exposure may be beneficial. We urge you to devote whatever
time is necessary to those topics in which you need review.

0-2
BASIC TERMINOLOGY

Whole numbers are those numbers which are used in counting, such
as 0, 1,2, 13, 44, and 610; they are also called integers. Whole numbers
are either even or odd, depending, respectively, on whether they are
divisible by 2 or not. Thus, 2, 10, and 1564 are even integers and 1, 3, 29,
and 97 are odd integers.
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A prime number is a whole number greater than 1 that is divisible
only by itself and 1. Thus, 2, 3,5, 7, 11, 13, and 17 are prime numbers,
but 15 is not, since 15 is divisible by 3 and 5 as well as 15 and 1.

Whole numbers are represented by combinations of the ten digits
0,1,2,3,4,5,6,7,8, and 9. An analysis of the numeral 234 would be
that the digit 4 occupies the units place and represents four 1’s (4), the
digit 3 occupies the tens place and represents three groups of 10 (30),
and the digit 2 occupies the hundreds place and represents two groups of
100 (200).

It seems reasonable to assume that you are totally familiar with addi-
tion, subtraction, multiplication, and division of whole numbers, and so
we dispense with any further discussion of these operations. It is appro-
priate, however, to state two important properties that are valid for all
types of numbers:

1. The addition and multiplication of a group of numbers can be performed
in any order.
Thus,2 +3+4=4+2+43 =4+ 3+ 2=209. Similarly, (3)(2)(4) =
(2)(3)(4) = 4)(3)(2) = 24. Since the numbers 2, 3, and 4 when multiplied
together give 24, each of 2, 3, and 4 is called a factor of 24, and 24 is
called the product of 2, 3, and 4.

2. The operations of subtraction and division must be performed in the given
order.

Thus, 6 — 3 is not the same as 3 =~ 6. In 6 — 3 = 2, 6 is called the
dividend, 3 is called the divisor, and 2 is the quotient.

In computations involving more than one operation, multiplications
and divisions should be performed first, followed by the additions and
subtractions. For example,

a. 6 (6)(2) =6+ 12 = 18.

b. 12— (@) =12 —4=38.

c. (12)2)+4 63 =24+ 2=206.

However, any series of operations within parentheses should be performed
first. Thus,

d. 124 (2 + 3) — (46 — 3)
=124 5— @3
= 1D 5 =12
— 17 —12
— 5.
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16 + (12 = 3)(4 — 3)
=16 + 4)(1)

— 164 4

=20,

To avoid any ambiguity in part c above, 6 = 3 can be written §, and it is
preferable to write

(12)2) + & instead of  (12)(2) + 6 = 3.

EXERCISE 0-2

Perform the indicated operations in Problems 1-20.

1.

[ T N S O SO Y o G G S ey
Il = S AT A

)
N

@ N R woN

10 4 (2)(4) — (8 =+ 2)
(12 — 4)(6) + 2(5 + 1)

1600 — (5)(210 = 2)(2)

@ =2) +76)3 —1) — 17
C+4—5+2+3—9+O6+2

(36 = 6)(6 —2)(1 +2) — 6

2 +16)(8 — 2) = (5 — 2)(1)

(12 — 4)(3 + 1) + 2(16 = 4) — 12

(223)(21)(84)

(1062)(2)(56)

8525 = 341

10,209 = 123

(621)(4)(16) = 8

26,451 - 26,245 + 86,216 — 726 -+ 624 — 18,707
576 = (2 + 16)

8622 = (13 — 4)

(12,604)(865)

33,454 - 86

1,864,200 - 17,925

1,003,005 — 6471

The tens and units digits of the number 862 are reversed and the new
number is subtracted from 862. What is the result?

What digit must be changed in 6257 to make it an even number?
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23. If the dividend and quotient of a division are both 6, what is the divisor?

24. The product of three factors is 504. T'wo of the factors are 6 and 7. Find
the third factor.

25. In the number 6'2,417, what place does the 6 occupy?

0-3
COMMON FRACTIONS

A common fraction such as 2 consists of the numerator 2 and the
denominator 5. It can be considered as denoting the division of the
dividend 2 by the divisor 5 and, as a result, is often referred to as being
the quotient of 2 divided by 5, or, simply, the quotient 2.

Fractions are of two types, depending on the relative values of the
numerator and denominator. If the numerator is less than the denomi-
nator, such as in §, the fraction is said to be a proper fraction and its
value is less than 1. If, on the other hand, the numerator is equal to or
greater than the denominator, the fraction, which has a value of at least 1,
is said to be improper. Fractions such as 4, 18, and {4 are examples of
improper fractions. Any improper fraction can be expressed as the sum
of an integer and a proper fraction, called a mixed number. For example,

@=3+45=3

Here the improper fraction 22 is equivalent to the mixed number 33.

To write an improper fraction as a mixed number, it is only necessary
to divide the numerator by the denominator, thus obtaining the integer
part, and add to this the fraction whose numerator is the remainder of
the division and whose denominator is the denominator of the original
fraction. Thus,

a. %:1—[* %“:11‘3@
b. =44 3=143

A fundamental principle used in computations involving fractions is
that multiplying or dividing both the numerator and denominator of a fraction
by the same nongero number does not change the value of the fraction. In effect,
the fraction is being multiplied by 1. Thus,

3 34 12

8§ ®@ 32
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b 12=2_ (2@ _ 2
1 Mme 2

12 124 3
16 16 -4 47
210 2102 105
26 262 137

By multiplying both the numerator and the denominator of a fraction
by the same number, we can express the fraction as an equivalent fraction
having any desired denominator. Thus, if the fraction 3 is to be written
as an equivalent fraction whose denominator is 24, it should be clear that
since the denominator must be multiplied by 3, so must the numerator.

5 (503) 15

8 (BB 24
A fraction is said to be in lowest terms if the numerator and denomi-
nator have no common factor other than 1. Thus, 1§ is not in lowest
terms since 18 and 12 have a common factor of 6, that is, 18 = (6)(3) and
12 = (6)(2). However, by dividing the numerator and denominator by
6 we get the equivalent fraction

18 186 3

12 12-6 2’
which is in lowest terms. Moreover, if we write the fraction 18 as

©6)
(©0)(2)
the division by 6 is seen to be nothing more than the familiar process of

cancellation, whereby factors common to the numerator and denomina-
tor cancel each other, denoted by slashes (/):

©e) 3

)2 2
The process of repetitive cancellation can be used as follows, where in
each step, a factor 2 is removed:

52 26 13
104 104 52 26 13
224 224 B2 56 28
112 56 28
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In a similar fashion,
1 2 1
(12)e)3(14) A2}y  (12)(6)2)
(22)(14)%2—%—)(18) o (22)(14)’@?)(18) o 4%?(14)(18)

1 4
(12){6y 2y

o (11)(14){—1—2—) o (ll)(l4)(§v7

2
b 2

T anas 77
7

This can be written more compactly as

2 1
411 2

A4y 2

eyHEhHEs 77
1 77 3

11
The sum (or difference) of two fractions having the same denominator
is a fraction having the same denominator as the original fractions but
whose numerator is the sum (or difference) of the numerators of the
original fractions. For example,

2 5 245 7

A ?+?: 3 :?
L 86 _8-6 2
9 9 9 9
7 .3 5 T43—~5 5
¢ BT 18 18
Qg 2 6 4 1 _12-6+4-1_9 1
A R e 37 =53

To add fractions when the denominators are not alike, the fractions
must first be expressed as equivalent fractions, all of which have the same
denominator. The appropriate denominator to choose is the smallest
number such that each of the denominators is a factor of it. Such a number
is called the least common denominator, denoted L.C.D. For example,



