Ramirez/Weiss

Micidgprocessing
Fundamentals

Hardware
and

Software

<<

Edward V. Ramirez

Grumman Aerospace Corporation

Melvyn Weiss

Hughes Aircraft Company

McGRAW-HILL BOOK COMPANY
GREGG DIVISION

New York Atlanta Dallas St. Louis San Francisco
Auckland Bogotad Diisseldorf Johannesburg
London Madrid Mexico Montreal
New Delhi Panama Paris
Sao Paulo Singapore
Sydney Tokyo
Toronto

Sponsors: George Horesta and Mark Haas
Editing supervisor: Alice V. Manning

Design supervisor: Karen T. Mino

Art supervisor: Howard Brotman

Production supervisor: Kathleen Morrissey
Cover photographer: Martin Bough/Studios, Inc.

Library of Congress Cataloging in Publication Data

Ramirez, Edward V
Microprocessing fundamentals.

Includes index. v

1. Microprocessors. 1. Weiss, Melvyn, joint author.
[I. Title.
QA76.5.R299 1980 001.6’4'04 79-17922
ISBN 0-07-051172-1

Microprocessing Fundamentals: Hardware and Software

Copyright © 1980 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher.

1234567890DODO7865432109

<<

This book provides an introductory treatment of the microprocessor. Major
topics covered are the basic elements of a microprocessor, programming
fundamentals, the microprocessor interface, and microprocessor applica-
tions. With the growing number of microprocessors entering the field, an
attempt was made to use a generic microprocessor rather than emphasizing
any particular one. While this book does not contain any specification sheets
or analyses of present-day microprocessors, it will provide you with a sound
background in microprocessor fundamentals. The subject matter does not
require any background in digital technology; however, a basic knowledge of
this subject may be beneficial.

Chapter 1 deals with the basics of digital technology and should be helpful
to readers who are unfamiliar with digital techniques. Chapter 2 reviews the
basic elements of digital computer systems, stressing the fundamental oper-
ations that must take place at the functional level. In Chap. 3 you are
introduced to microprocessor concepts. Chapter 4 is devoted to technology
and the functional operation of solid-state memories.

Chapter 5 covers programming fundamentals with the concepts of in-
structions and addressing modes being presented. The ‘‘generic instruction
set,” a group of 30 basic instructions, is described, with illustrative examples
to help you to understand the concepts of addressing modes and instruc-
tions. An understanding of the generic instruction set will provide you with
the knowledge to program any available microprocessor.

Chapter 6 is devoted to software, with machine, assembly, and high-level
languages described. The procedure describing how software is developed
and the tools for accomplishing this are included. Chapter 7 introduces
flowcharts and describes, step by step, the program instructions required to
implement the numerous flowcharting examples.

An insight into microcomputers and bit-slice microprocessor units is
presented in Chap. 8. Chapter 9 discusses interfaces, an important aspect in
understanding microprocessors. Data transfer techniques and input-output

vil

Preface vii
Introduction Evolution of Microprocessors

Chapter 1 Basic Digital Techniques 4
1-1 The Decimal Number System 4

1-2 The Binary Number System 7

1-3 Digital Integrated Circuit Devices 20

Chapter 2 Computer Fundamentals 31

2-1 The Memory System 31

2-2 Computer Organization 39
2-3 Arithmetic and Control 42
2-4 The Input-Output Section 47
2-5 The Computer System 48

Chapter 3 Elements of a Microprocessor

3-1 Partitioning the Microprocessor 51
3-2 The Instruction Execution Cycle 64
3-3 A Microcomputer System 66

iii

1

51

iv CONTENTS

Chapter 4 Technology 70

4-1
4.2
4.3
4.4

A Technology Overview 70

LSI Processing Techniques 72
Semiconductor Technologies 76
Main Storage Memories 80

Chapter 5 Programming Fundamentals 91

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
59

Defining the Instruction Set =~ 91

The Generic Instruction Set 95

Interpreting the Instruction 96

Detailed Description of the Generic Instruction Set 100
Status Flags 111

Addressing Modes 113

Stacks 124

Application of Addressing Modes 134

Review of the Instruction Execution Sequence 138

Chapter 6 Software 143

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9

Defining Software 143

Approach to Software 145

Language Translation 145

Comparing the Three Approaches 153
Assemblers 156

High-Level Languages 161

Software Development Approaches 162
Program Development 164

The lterative Process 169

6-10 Other Software 170

CONTENTS V

Chapter 7 Programming Applications 173
7-1 The Flowchart 173

7-2 Levels of Flowcharts 177

7-3 Programming Loops 180

7-4 Subroutines 183

7-5 Macros 188

7-6 Eight Programming Examples 188

Chapter 8 Beyond the Microprocessor Chip 204
8-1 The Multichip System 204

8-2 The Microcomputer 207

8-3 Microprogrammable Processors 210

Chapter 9 The Microprocessor Interface 224
9-1 Data Transfer Techniques 225

9-2 Synchronizing Data Transfers 229

9-3 Direct Memory Access 242

9-4 Input-Output Devices 247

9.5 Interfacing Trends 264

Chapter 10 Application and Selection 267
10-1 Applications Overview 267
10-2 Application Examples 270
10-3 Selecting a Microprocessor System 275

Appendix A Powers of 2 286
Appendix B Hexadecimal-to-Octal Conversion 287
Index 288

Introduction

Evolution of Microprocessors

The development of microprocessors in the 1970s represents a significant
advance in electronics. The microprocessor’s popularity stems from many
factors, such as its small size, its low power needs, its small parts count
compared with hard-wired logic, and, perhaps most important of all, its low
cost. Because of the microprocessor’s small size and low cost, consumers
and small businesses can now have in a handful of chips as much computa-
tional power as computers that in 1970 were affordable only to big users of
data processing systems.

In the early 1960s a single transistor used for digital logic circuitry sold for
an average price of about 5 dollars. In the late 1970s the same 5 dollars
could purchase a single microprocessor chip; however, this chip had 10,000
transistors and included all the necessary resistors and intracomponent
connections—a truly remarkable technological achievement.

To a large extent we owe the successful development of microprocessors
to the needs of the military and the space program, which led manufacturers
to develop miniaturized electronic circuits known as microelectronics. The
need was for systems with reliable performance, low power dissipation, light
weight, and small volume. These goals required small circuits. Semicon-
ductor manufacturers were able to increase the circuit density of a basic chip
by using simpler processes and by reducing the pattern mask sizes. This
trend toward higher-density packaging continued through the 1960s. How-
ever, the success of microprocessors is really attributable to the commercial

2 MICROPROCESSING FUNDAMENTALS

market, whose demands have created a high level of production and a
subsequent reduction in the selling price of microprocessors.

A microprocessor can be defined as a single integrated circuit consisting
of thousands of digital gates which perform the arithmetic, logic, and control
functions of a general-purpose computer. It is a member of the family of
large-scale integrated circuits, which reflect the present state of a trend
toward miniaturization that began with the development of the transistor in
the late 1940s.

As the semiconductor industry continues to make lower-cost chips with
more functions, it is only natural for it to attempt higher levels of circuit
integration. Microprocessors require external input-output circuits and
external memory to functionally operate as computers. The trend is to
incorporate these circuits into the same chip as the microprocessor, thereby
forming a computer on a single chip. This configuration is called a micro-
computer. Integrated into an area of less than 40,000 square mils (mil?) are
a memory, input-output interface circuits, and the arithmetic, logic, and
control functions of a microprocessor. As new classes of these devices
become available, the use of microprocessors and microcomputers will
broaden.

In the mid-1960s, when medium-scale integration (MSI, with 50 to 400
transistors per chip) technology appeared, it was widely used to make
smaller computers than those that had previously existed. Minicomputers, as
these computers were called, were intended for a specific, limited market.
Minicomputers were designed to capture (as they in fact did) the low end of
performance, such as controller functions, data acquisition, and displays
formerly handled by large computers.

Minicomputer advantages included fast processing rates, relatively short
word lengths, and versatile input-output structure. Also an important factor
in the “mini’” success was the small physical size achieved by the use of MSL
Large computers, called main frame units, using MSI parts soon followed.
Cost was probably the most important factor in the success of the minicom-
puter. In the mid-sixties minicomputers were selling for about $25,000; by
the late 1970s they were selling for under $10,000. This low price, coupled
with modest performance, guaranteed minicomputers a place in the com-
puter market.

The data processing spectrum is so wide that microprocessors and
microcomputers have also captured part of the available market and even
created new markets. The microprocessor will capture many of the low-end
applications presently being performed by minicomputers.

Another trend being observed is in the increased level of complexity found
in newer microprocessors. Circuits such as timer/counters and drivers,
normally found external to the chip in older microprocessors, are now being

INTRODUCTION: EVOLUTION OF MICROPROCESSORS 3

integrated into the chip. When the first microprocessor was developed it was
a 4-bit unit with modest density. Other units developed since have increased
bit length and density. By the late 1970s mest microprocessors were using 8
bits per word, with newer units having 16 bits per word. It is reasonable to
forecast that with the emphasis presently being placed on 8-bit microcom-
puters and 16-bit microprocessors, dramatic price reductions for single-chip
16-bit microcomputers will be a reality.

N\

Basic Digital Techniques

A

The microprocessor is a product of large-scale integration (LSI) technology,
which uses digital techniques for its input, output, and internal structure. This
chapter presents a review of number systems and digital integrated circuit
(IC) building blocks.

The decimal number system which we use has as its base 10, since each
digit position can contain any number from 0 to 9, a total of 10 different
numbers. Early attempts to design decimal computers provided little fruitful
result, as it is difficult to reliably represent 10 different states. A more
satisfactory approach utilizing only two levels was adopted, with logic 1
representing one level and logic O representing the other level. In order to
understand the binary system, it is first necessary to fully understand the
familiar decimal (base 10) number system.

1-1 DECIMAL NUMBER SYSTEM

The number 4385 is read as ‘“‘four thousand three hundred eighty-five”: we
start with the most significant digit at the extreme left. A method of writing
4385 is

4385, =4 x 10% + 3 x 102 + 8 x 10! + 5 x 10°

The digit position at the extreme right is the one of least value. The value of
each digit position to the left increases by a power of 10.

When we add two numbers in the decimal number system, the rules are to
first add the least-value digits and then the next higher-value digits, etc.

4

BASIC DIGITAL TECHNIQUES 5

Should the sum of any two digits exceed 10, a carry is generated into the
next higher digit position. For example,

086
+057

The addition is performed as

6+7 =3+ “carry 17

8 + 5 + 1 (previous carry) = 4 + “carry 1”

0 + 0 + 1 (previous carry) = 1 + “carry 0”
Answer = 143

In subtraction, the subtrahend is subtracted from the minuend. The
subtraction rules state that if the minuend digit is less than the subtrahend
digit then the base 10 is added to the minuend and the next subtrahend digit
to the left has a “borrow 1” added to it. For example:

86 minuend
=57 subtrahend

The subtraction is performed as

6 —7 =10 (1 borrow) + 6 —7 =16 —-7=9
8 -5=8—(5+ “borrow1”) =8 -6 =2
Answer = 29

A more significant method of subtracting is the 9’s or the 10’s comple-
ment system.

The 9’s and 10’s Complements

Nine’s and ten’s complements can be used to convert subtraction operations

to additions.
To convert to the 9’s complement, each decimal digit is subtracted from 9.
For example, Find the 9’s complement of 37, 45, and 29.

99 99 99
-37 —45 -29

62 54 70
9’s complement of 37 = 62
9’s complement of 45 = 54
9’s complement of 29 = 70

In9’s complement subtraction, the subtrahend is complemented and then
added to the minuend. The carry generated from the highest digit position is

6 MICROPROCESSING FUNDAMENTALS

not used to form a new digit position but instead is added to the sum under
the original digit position.

EXAMPLES
Subtract 17 from 84 Subtract 3 from 75
9’s complement of 17 = 82 9’s complement of 03 = 96
84 75
+ 82 + 9%
166 171
carry gil carry Li
67 72

To convert to the 10’s complement system from the 9’s complement, 1 is
added to the 9’s complement value.

EXAMPLE

Determine the 10’s complement of 12, 44, and 73.
9’s complement of 12 = 87, 10’s complement of 12 = 88
9’s complement of 44 = 55, 10’s complement of 44 = 56
9’s complement of 73 = 26, 10’s complement of 73 = 27

In 10’s complement subtraction, the subtrahend is first converted to its
10’s complement and then added to the minuend. The resultant carry
generated from the highest digit position does not form a new digit position
but instead is ignored.

EXAMPLE 1 _
Subtract using 10’s complement arithmetic
86
57

subtrahend = 57
9’s complement = 42
10’s complement =42 + 1 =43

86
+ 43
129
Ignore carry

Answer = 29

BASIC DIGITAL TECHNIQUES 7

EXAMPLE 2
Subtract using 10’s complement arithmetic
456
~308

subtrahend = 308
9’s complement = 691
10’s complement = 691 + 1 = 692

456
+ 692
1148

Ignore carry
Answer = 148

1-2 THE BINARY NUMBER SYSTEM

Digital systems, in contrast to analog systems have only two states, On and
Off. These two conditions can be represented by the opening and closing of
a switch or in common transistor-transistor logic (TTL) by the 1 state
(4 V =1 V) and the O state (0.2 V == 0.2 V). The logic 1 state is frequently
specified as 2.4 V minimum and the logic O state as 0.8 V maximum. Since a
digital system has only two states, it can be readily represented by the binary
system, which has only two notations, 0 and 1. The binary system is the base
2 system, in contrast to the decimal system, which is the base 10 system. The
principle behind representing any decimal number in binary is positional
notation. That is, all digit positions to the left of the point, which in the binary
number system is called the binary point, have ascending powers of 2. The
first, or least significant, digit to the left of the binary point has a 2° value. The
next digit to the left has a 2! value or weight assigned to its position. Each -
subsequent position to the left has its weight value, in powers of 2, increased
by 1 over the previous digit. A four-digit number will have the digit weight
assignment 23222120, where any digit if it is 1 will assume the weight of its
position. The binary number 1010110 can be converted to its decimal
equivalent value as follows:

1010110 = 1 X 26 + 0 X 25 +1 X 24 +0x 23 +1 x22 +1 x 21 +0 x 2°
=1x64+0+1x16+04+1%x4+1%x2+0
= 86y

Table 1-1 represents the equivalent binary numbers of decimal numbers O
through 15. A table of powers of 2 is found in Appendix A. Note that the

8 MICROPROCESSING FUNDAMENTALS

TABLE 1-1
DECIMAL BINARY ' DECIMAL | BINARY
NUMBER EQUIVALENT NUMBER EQUIVALENT

0 0000 8 3 1000
1 0001 9 ' 1001
", 0010 10 1010
3 0011 11 1011
4 0100 12 | 1100
5 0101 ‘ 13 1101
6 0110 14 1110
7 0111 15 1111

number 15 has 1s in all digit positions. This implies that with four digits the
highest value that can be represented is 15. This can be expressed
mathematically as

Highest decimal value = 2" — 1

where n is the number of binary digits. With eight digits, the highest decimal
number that can be expressed is 255; i.e., 28 — 1 =256 — 1 = 255.

Bits and Other Terms

A binary digit (a 1 or a 0) is called a bit. A group of 4 consecutive bits within
a computing system is called a nibble, while 8 consecutive bits make up a
byte. Most microprocessing systems have an 8-bit internal structure, where
transfers between the elements are done in parallel and with 8 bits. The term
commonly used to describe a group of 8 bits that function together as a unit
is the word. A word in a typical microprocessing system is a byte (8 bits):
however, in larger systems a word can be 16 bits. Large data processing
systems use words of 32 or 64 bits. This represents 4 to 8 bytes, or twice this
number of nibbles.

In any data word organization, the bit furthest from the least significant
bit (LSB) is called the most significant bit (MSB). In computer terminology
both the LSB and the MSB digits are usually specifically referred to as such.

Binary Code Applications

Suppose it is necessary to represent the numbers 0 through 9 (10 characters)
and the uppercase and lowercase alphabet (52 characters) in binary codes:
this would require a total of 62 characters. Since 25 < 62 < 2°, a minimum
of 6 bits is required. These 6 bits form a word, with each word capable of

BASIC DIGITAL TECHNIQUES 9

TABLE 1-2 Binary Representation of the Character Code

B5 | | \ | RO WORD |
(MSB) B4 | B3 B2 | Bl ‘ (LSB) | NUMBER | CHARACTER

B] I ‘ = T
0 ol ol o o0 0 0 A
0 o 0 0| 0 1 | B
0 0 0 0 1 ‘ 0 2 ‘ C
0 1 1o o 25 s
0 1 1 0 | 1 %6 | %
1 0 0| 1 ‘ 1 51 ‘ %
1 1 0 1 01| 0 52 | 0
1 0 0 ‘ 1 53 ‘ 1
B o : | .

defining a character. The binary format of these characters could be as
shown in Table 1-2, with BO through B5 representing the 6 binary bits. When
this binary format is transmitted to an 8-bit microprocessor, each byte
represents a character plus 2 spare bits, bits B6 and B7. These spare bits may
be used to verify that no bits were lost in the transmission to the microproc-
essor and to tell the microprocessor that the transmitted character is valid.

A self-checking scheme which can enhance the validity of the transmitted
data can be implemented by the use of parity. Parity is a method by which the
total number of binary 1s (or Os) is always even or always odd—no matter
which character is transmitted. When the sum of the binary 1s in a word is
odd, this is called odd parity. If the sum is even, this is called even parity.
Table 1-3 shows a revised word structure using the entire 8 bits. The
microprocessor using this word structure can test bit B6 to see if the charac-
ter is valid, and after determining validity it can verify proper transmission.

Positive Logic vs. Negative Logic

A common misconception is that negative logic refers to negative voltage.
This is not true. Positive logic in TTL means simply 4 V =1 V = logic 1 and
02V=+02V =logic 0. In negative logic 4V=+=1V =logic 0 and
0.2V + 0.2V = logic 1. In positive logic the word True refersto4 V+=1V
and False 0.2V =+ 0.2V, while in negative logic the word True means
0.2V + 0.2V and False means 4 V == 1 V. If an interface is TTL and uses
negative logic, a True signal will be 0.2 V = 0.2 V. Figure 1-1 shows posi-
tive-logic and negative-logic waveshapes.

10 MICROPROCESSING FUNDAMENTALS

TABLE 1-3 Binary Representation of the Character Code Using B7 as
Parity (Odd) and B6 as Validity*

PARITY |
(ODD)
(MSB) | VALIDITY (LSB)| WORD
B7 | B6 B5|B4| B3|B2|B1| BO |NUMBER | CHARACTER
0 i ojolo0lo0o|0]| O 0 | A
1 ojlo|0]l0|0 1 1| B
1 ‘ 1 o/l0/0|0]1 0 2 C
1 ‘ 1 o|1|1]0]|0 1 25
1 1 0111 \ 01 \ 26 a
0 1]1]o0j0|1] 1 51 z
1 1110 1 0 52 0
0 1 1/1/0(110 1 53 1
1 1 1 \ 11,10 1 61 9
*1 = VALID
0 = INVALID
True ll*,vel\ - A4V£1lV
4V+1V
02V02V
0.2V+02 V/ S True level

(a) (b)
Figure 1-1 Positive logic vs. negative logic.
(a) Positive logic; (b) negative logic.
Decimal-to-Binary Conversion

A method of determining the binary equivalent of a decimal number is to
successively divide by 2 and use the remainders as the answer, the first
remainder being the LSB, and so on.

EXAMPLE
Determine the binary equivalent of 57.

28
' 2)57 R =1 (LSB)

14
zm R=0

