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PREFACE

The field of mathematical programming has reached a mature, although by
no means moribund, state. The 1950s saw the development of many of the
basic results and techniques, such as the simplex method and the Kuhn-
Tucker theorem, and the identification of many important research prob-
lems. The 1960s saw the specialization of the field into subfields including
integer programming, nonlinear programming, dynamic programming, and
so on, with researchers working exclusively within one subfield on the
development of special-purpose algorithms.

The 1970s have seen the development of conceptual results facilitating
the reintegration of the various subfields. Of particular importance in this
regard is Lagrangean duality and the related topic of convex analysis,
which has played a central role in our understanding of all types of
mathematical programming problems. By contrast, we have probably
reached a point of diminishing returns in the development of new algo-
rithms, although integer and nonlinear programming problems remain
difficult to solve.

Applications of mathematical programming models have proliferated in
the 1970s, in large part because of the existence of effective computer
codes for solving them. These applications often involve a mixture of
mathematical programming problems; for example, a plant location model
for a manufacturing firm can include a network optimization problem
describing the distribution of its products, nonlinear functions describing
demand for the products in various markets s functions of their selling
prices, and a mixed integer programming mc el describing the timing,
sizing, and locational options available for new plants. Thus practical
applications as well as theoretical developments have provided an impetus
toward the integration of mathematical programming.

The mature state of mathematical programming suggests that the time is
appropriate to try to present in one volume most of the basic results about
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viii PREFACE

the structure of mathematical programming problems and descriptions of
many of the algorithms for solving them. In addition, such a volume
should contain a development of Lagrangean duality and convex analysis
that relates these subjects to the spectrum of mathematical programming
problems, thereby exposing their differences and similarities and indicating
how complex model integration can be achieved. These are the goals of
this book. The reader should be cautioned, however, that the mathematical
development is uniformly terse and will sometimes require a careful
reading of new material.

The wide coverage of topics should permit this book to be used as the
basic text in a variety of intermediate and advanced courses in mathemati-
cal programming. The following are suggested one-quarter or one-semester
courses based on various combinations of the chapters:

Linear Programming Chapters 1 and 2

Network Optimization Chapters 3 and 4

Combinatorial Optimization Chapter 3,
Chapter 5 (Sections 5.1 to 5.3), and
Chapter 8

Large Scale Optimization Chapters 5 and 6

Nonlinear Programming Chapters 5 and 7

Convex Analysis and the Chapters 5 and 6, Appendix A

Theory of Optimization

The book can provide the basic results for a course on a particular subject.
These could be supplemented by the instructor’s own notes, specific papers
from the literature, or another book, according to taste.

The content and organization of the book also serve as an aide to
students and researchers in mathematical programming as the field con-
tinues to grow in the years ahead. There are currently two major directions
of growth. One is the development of fields of pure and applied mathemat-
ics that use mathematical programming constructs as basic building
blocks; for example, the field of combinatorics that has grown out of
combinatorial optimization, or abstract theories of optimization and con-
vex analysis involving more complex vector spaces than finite dimensional
spaces. This book provides students and researchers in these new fields
with a broad survey of the basic results from which the mathematical
generalizations are taken.

A second area of growth results from the infiltration of mathematical
programming into other scientific disciplines such as economics, statistics,
and engineering design, to name only a few. Many new theoretical and
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applied research problems have been discovered as the result of the use of
mathematical programming in these new fields; for example, studies result-
ing from the integration of forecasting models with mathematical program-
ming models of the efficient production and distribution of the commodi-
ties being forecasted. Again, this book provides much of the background
necessary to study the use of mathematical programming in new fields.

The ideas and research accomplishments of many people influenced the
development and content of this book. George Dantzig’s prodigious con-
tribution to mathematical programming must be singled out as having
profoundly influenced us all. Ralph Gomory’s work had a particularly
strong influence on me, especially his research on the use of group theory
to analyze integer programming problems. My initiation into research is
due in large part to Harvey Wagner, who served as my dissertation advisor
and encouraged me to pursue an academic career. My personal viewpoint
of mathematical programming was shaped most by direct interaction with
and reading the papers of David Bell, Tony Fiacco, Marshall Fisher, Tony
Gorry, Ellis Johnson, Art Geoffrion, Richard Grinold, Jerry Gould, Mike
Held, Dick Karp, Tom Magnanti, George Nemhauser, Bill Northup, Herb
Scarf, and Larry Wolsey.

Contracts from the Army Research Office and the National Science
Foundation to the Operations Research Center at M.I.T. supported re-
search that subsequently motivated me to write this book.

Tom Magnanti showed devotion beyond the call of duty by reading the
final draft of this book and by making many insightful comments as well
as catching numerous errors. I also profited by comments received from
Gabriel Bitran, Dorothy Elliott, Bruce Faaland, Eduardo Modiano and
Paulo Villela. The remaining errors are my own responsibility. The title of
the book was suggested by an anonymous reviewer who I also wish to
thank. Finally, a debt of gratitude is owed to Kathy Sumera for having
done most of the typing of the final manuscript. Joan Kargel and Betsy
Sherman did the typing of earlier drafts.

JEREMY F. SHAPIRO

Cambridge, Massachusetts
April 1979



MATHEMATICAL
CONVENTIONS

Whenever possible, we will not define explicitly a vector as a row or
column vector and use it in both senses in matrix multiplication. The
dimensions of the matrix and the nature of the matrix multiplication, pre-
or postmultiplication, will usually determine unambiguously the sense of
the vector. Thus, we will indicate vector transposes only where it is
necessary for clarity. We will use the notation G¢ to denote the comple-
ment of a set G. The notation [ X]°, where X is a subset of R”, denotes the
convex hull of X. The empty set will be denoted by &. Occasionally, we
will also use & to denote a mathematical function. The context will make
the meaning clear. Other conventions will be explained as they arise.
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LINEAR PROGRAMMING

1.1 INTRODUCTION

Linear programming is fundamental to the study of mathematical pro-
gramming because many important applications are linear programming
problems, linear programming approximations are used in the solution of
nearly all mathematical programming problems, and concepts and insights
derived from linear programming are the basis for much of the general
theory of mathematical programming. In this chapter we consider the
well-known simplex algorithm for solving linear programming problems.
The algorithm has been a great practical success in solving real-life
problems as well as providing a mathematical tool that is of paramount
importance to all areas of mathematical programming.

1.2 THE SIMPLEX METHOD

The linear programming problem in the form we will study it in this
chapter is

min z =¢x
s.t. Ax=b (1.1)
x>0

where A is a m X n matrix of rank m, ¢ is a 1 X n vector, and b is an m X 1
vector. The notation “s.t.” is an abbreviation for “subject to.” This linear
programming problem is said to have m rows and n columns. The matrix A
is called the coefficient matrix, ¢ the cost vector, b the right-hand-side
vector. The linear function cx is called the objective function. The m X 1
vectors a;, which are the columns of A will sometimes be called activities.
An n X1 vector x satisfying Ax=b, and x >0, is called a feasible solution,
and a minimal cost feasible solution is called an optimal solution. The set
{x|Ax=Db,x > 0} is called the feasible region and it is a convex set; proper-
ties of convex sets and functions are reviewed in Appendix A. If (1.1) does
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2 LINEAR PROGRAMMING

not have a feasible solution, we take the minimum to be +oo. If there
exists a sequence of feasible solutions to (1.1) with objective function cost
approaching — oo, we take the minimum to be —co.

The constraints of a linear programming problem can be presented
originally in the inequality form and converted to the equality form by the
addition of slack variables or surplus variables. Specifically, an inequality
27.1a,;x; <b; is converted to the equality 37_,a;,x;+5,= b; by the addition
of the slack variable s; that is constrained to be nonnegative. The reverse
inequality 37_,a;,x;; > b, is converted to X7_,a;;x;,—s,=b; by the addition
of the nonnegatlve surplus variable s,. Slrmlarly, a maximization problem
can be converted to a minimization problem by the rule maxcx= —min—
cx; that is, we minimize — cx and the optimal objective function value of
our maximization problem is the negative of this quantity. Finally, if a
variable x; is unconstrained in sign, then we make the substitution x;= x;*
—x;~ where xj+ and x;” are constrained to be nonnegative.

One of the major strengths of linear programming as a model and the
simplex method for solving it is the fact that so many decision problems
can be formulated and solved in exactly the form (1.1). This is in contrast
to the nonlinear and integer programming problems studied in later
chapters that can also be stated in general form but their effective
optimization often requires the use of specific algorithms that exploit
special structures of particular problems.

The simplex method for solving the linear programming problem (1.1) is
derived from classical theory for characterizing the solutions x satisfying
Ax=Db by transforming this system to a more convenient equivalent form.
A system A’x=Db’ is said to be equivalent to Ax=Db if their solution sets are
equal. The simplex method adapts the classical theory to take into account
the nonnegativity constraints x >0 and to select a minimal cost solution
from among the feasible solutions.

Let B denote an m X m nonsingular submatrix of A; without loss of
generality, assume we have reordered the columns of A so that A=(B,N).
The matrix B is called a basis. Let x be similarly partitioned as (xg, Xy); the
variables xg are called basic variables and the xy are called nonbasic
variables. A characterization of the solutions to the system Ax=b or
equivalently Bxg+Nxy=b is given by the vectors (xg,xy) in R” where xy
is any vector in R"~"™ and

xg=B 'b—B 'Nxy (1.2)

The solution (xg,xy) =B~ 'b,0) is called a basic solution. It should be clear
that a basic solution is unique since B is a nonsingular matrix. A basis B is
called a feasible basis if B~ 'b>0. We say a basic feasible solution is
degenerate if one or more components b of the vector b=B~'b is zero. If
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all components b_, are positive, then the basic feasible solution is called
nondegenerate.

It is necessary to study in detail the process whereby Ax=b can be
transformed with respect to a basis inverse to the equivalent form (1.2).
Specifically, we want to study the elementary operations whereby the
original system

> a;x;=b, i=1,....,m (1.3)
j=1
is transformed to the basic system
x+ X a;x=b i=1,....m (14)
j=m+1

The a,; are the elements of the m X (n— m) matrix B~'N and the b, are the
elements of the m-vector B~ 'b.

The transformation from (1.3) to (1.4) can be accomplished by a series
of pivot operations, which we now define. We leave it to the reader to verify
that a pivot operation on a linear system produces an equivalent system.

Definition 1.1. A pivot operation on a linear system consists of m
elementary operations, which transform the system to an equivalent system
in which a specified variable has a coefficient of unity in one equation and
zero elsewhere. The specific operations are:

1. Select a term a,, in the system (1.3) such that g, #0. This term is
called the pivot term.

2. Replace equation r by the equation r multiplied by (1/a,,).
3. For i=1,2,...,m, except i=r, replace equation i by the sum of
equation / and the replaced equation r multiplied by (—a;,).

The transformation of (1.3) to the basic system (1.4) is accomplished by
a sequence of m pivots. The first pivot term can be any a,, such that a,,#0.
After the first pivot operations has been completed, the second pivot term
is selected using a nonzero element from any equation except r, say
equation r'. After the second pivot operation has been completed the third
pivot term is selected in the resulting system from any equation except r
and r'. The general pivot operation is identical with the pivot term chosen
from equations that do not correspond to equations previously selected.
For simplicity, we have assumed that the form (1.4) can be achieved
without interchanging rows or columns.

A fundamental property of the simplex method is the transformation
from one basic system to another, which results when a basic variable is
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replaced by a nonbasic variable. This is accomplished by selecting any
element a,,#0 in (1.4) and pivoting on it. The result is

(-a,) z a, _ b
s = 7 = r -
X+t ———x,+ 2 (aij___'ais X;=0;— —-4q;
rs Jj=m+l a s
J 7S
i=1,....,m, isr (1.5)
1 nooay b,
— X, + 2 — xj+x:=_—'
a J=m+1 a. a,

J*s )
The indicated basic solution obtained by setting the nonbasic variables to
zero in (1.5) is

b _ .

x'_= i—__'ais I=1,...,m, l?ﬁr
a,

I;’ 1.6

= (1.6)

rs

To see that this pivoting operation is equivalent to substituting the
column a, for the column a, in the basis, let

B,=(a;,....a,_,a.a,,,...,4,)

X, =

and
B,=(a,,...,a,_a,a,,,...,4,).

We can readily verify that
B '=EB;' (1.7)

where
B als

aI'S
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The non-unit column of E is column r. In particular, (1.7) follows by
verifying EB; 'a,=e, for i=1,...,m, i#r, and EB; 'a,=e, where ¢, is the
ith unit vector in R™.

To complete the argument, note that (1.4) can be expressed as

B, '(Ax)=B; 'b
and (1.5) as
EB, '(Ax)=EB; 'b

where the latter equation can be verified by direct calculation. Thus, since
B, '=EB; !, pivoting on &, in (1.4) to obtain (1.5) is equivalent to
changing the basis representation of Ax=Db with respect to B, to one with
respect to B,.

With this background, we show how the simplex method proceeds from
a basic feasible solution to an optimal basic feasible solution. We will show
later in this section how an initial basic feasible solution is obtained. The
first result is a test for optimality of a basic feasible solution. Let the vector
¢ be partitioned as (cg,cy) conformally as (Xg, Xp)-

LEMMA 1.1. A basic feasible solution (xg,xx)=(B~'b,0) to the linear
programming problem (1.1) is a minimal cost solution if

Cn=cy—CcgB 'N>0 (1.8)

PROOF. We use (1.2) to substitute for the dependent basic variables xg
in the objective function

z=cgXg+C Xy =CgB 'b+(cy —cgB T 'N)xy =B 'b+Txy

The cost of the basic feasible solution with xy=0 is e¢gB~'b. If cy—
cgB~'N >0, then clearly cx > cgB~'b for any feasible solution (xg,Xy). W

Lemma 1.1 gives a sufficient condition for optimality of a basic feasible
solution. The coefficients

= —1 -
¢=c—cgB 'a, j=1...n

are called reduced cost coefficients; note that the reduced cost coefficient of
a basic variable is 0 since B_'aj is simply a unit vector that selects the
coefficient ¢; from the vector cg. If we define the m-vector u=czB~', then
each reduced cost coefficient ¢; is derived from the original cost coefficient
¢; by subtracting the quantity =7 ,ua;,. In the next chapter, we give an
economic interpretation of these u;, which are called shadow prices. For
future reference, we note from the proof of Lemma 1.1 that the objective

function cost as a function of the reduced cost coefficients is

z=Zy+ >, X, (1.9)

Jj=1

where Z,=czB " 'b (recall the ¢; are zero for the basic x)).



