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CHAPTER 0

INTRODUCTION

Duality is one of the most important notions of functional
analysis (and of modern Mathematics in general). It is thus not sur-
prising that in the theory of interpolation spaces much attention has
been devoted to duality questions. There are, however, some intrinsic
obstacles that prevent the formulation of a good duality theory in the
present setting of interpolation theory, which is the category of
Banach couples. The first difficulty is that if X = (XO’xl) is a
Banach couple, then the dual spaces (Xé,Xi) need not be a "dual
couple". A necessary condition for the dual spaces to form a Banach
couple is that X be what is usually called a "regular" couple,
meaning that the intersection, aX = xonxl, is dense in both XO and
Xl. However, as examples show, even if one restricts attention to
regular couples, it turns out that the dual couple need not be reg-
ular, so that the bidual is not a Banach couple. The second diffi-
culty is that if X is an interpolation space for X, then, even if
X is regular, the dual space X' need not be an intermediate space
for X, much less an interpolation space. A necessary condition for
X' to be an intermediate space is that AX be dense also in X.

This does not, however, insure that X' is an interpolation space for
X'. The third difficulty is that there is no general rule for what a
"dual method" should be for the construction of interpolation spaces,
although general intuition and experience has usually led to the right

constructions.

In this paper we are proposing a slightly different setting for



interpolation theory. We propose to work in the somewhat larger
category of doolittle diagrams (see Freyd [8] for the name) of Banach
spaces, which we shall denote by % (mimicking the standard notation
for the category of Banach couples). Our category B 1is the smallest
(natural) category, containing the category of Banach couples while
being closed under duality. B also enjoys some other interesting
properties: it has a Ban-valued hom-functor (which simply means that
the set of morphisms from X to Y is a Banach space under the
natural norm) and also a very useful Ban-valued tensor product.

As we have just pointed out, the new setting of % takes care of
the first of the traditional difficulties mentioned above. However,
it would be naive to think that there are no difficulties inherent in
this setting. The most important new difficulty that arises is that
it is no longer completely obvious what an interpolation space should
be. We have chosen to say that the "intersection" AX (in our
theory, the pullback) and the "sum-space" EX (the pushout) should be
interpolation spaces, and then we consider two classes of interpola-—
tion spaces modelled on these paradigms. On the one hand we consider
smaller (semi-) norms on AX so that we get spaces that are comple-
tions of AX; we call such spaces A-interpolation spaces. On the
other hand we consider larger (extended) norms on X so that we get
subspaces of £X; these, which are the only interpolation spaces
considered in the classical theory, we call Z-interpolation spaces.

As a first result, we show that the most important classical
methods, i.e. the real and the complex methods, have very natural
definitions in our theory. Moreover, we show that even if some of
them (the J-methods and to some extent the Ce-method) are intrin-
sically A-methods, they actually turn out also to be Z-interpolation
methods.

When we begin to study duality questions in our theory, we run

into part of the second traditional difficulty that unless AX is



dense in X, the dual space may be too large. Since this problem also
exists in the B-setting, our theory is quite satisfactory for A-
interpolation spaces, while it is much less satisfactory for Z-
interpolation methods.

The other part of the second difficulty - that of insuring the
duals of A-interpolation spaces for regular couples are interpolation
spaces — is overcome in our theory with the aid of the tensor product.
The problem arises because not all maps on a dual space are adjoints,
so even if the space is preserved by all adjoints, it need not be
preserved by all X'-maps. Our tensor product makes it possible to
consider a somewhat smaller substitute for the dual space which is
preserved by X'-maps (or in our terminology is a module over
L(X') = L(X',X'")). Many of our results are formulated in terms of
this "natural dual". The same definition can be applied also to Z-
interpolation spaces, but we have not been able to determine whether
the "natural duals" are interpolation spaces in this case.

Finally, we come to the last difficulty, namely that there is no
general rule for obtaining the "dual method" except that, as far as
possible, it should give rise to the dual space when applied to the
dual couple. We overcome this difficulty here by using the notion of
a "dual functor", first defined by Fuks [9] and applied to Banach
spaces by Mityagin and Svarc [19]. Since this notion is based on the
"natural duality" between tensor products and hom-functors, which our
category 3 1is also endowed with, it is possible to define the dual
functor for any Ban-valued functor F on % . This dual functor has
the property that the dual of a A-interpolation functor is a ZXZ-
interpolation functor, while the dual of a Z-functor is in some
algebraic sense still some kind of interpolation functor. The most
important classical methods that are not A-methods are the real
K(B8,»)-method and the complex Ce—method.

The purpose of this paper is to construct a theory of interpola-



tion which contains the classical theory and which is suitable for
duality. We have not, however, tried to prove everything in the
classical theory; e.g. we have made no efforts to prove compactness
results or to generalize recent developments like the interpolation of
more than two spaces or the notions of Calderon pairs or K-divisi-
bility. On the other hand we have included the recent development by
Janson [11] and Brudnyi-Krugljak [3] which has merged the important
Aronszajn-Gagliardo paper [1l] with the classical papers of Calderon
[4] and Lions—-Peetre [17] by showing that the real and complex methods
are actually minimal methods in the sense of Aronszajn-Gagliardo. We
have in fact strengthened these results somewhat by proving that the
methods are not only minimal as interpolation functors but are minimal
among all functors F such that for some couple A, FA = A.

In spite of the fact that one of the main features of our theory
is the thesis that the ordinary Banach space dual is not the natural
dual to consider in interpolation theory, we have made efforts to
prove that in certain cases our dual is actually the ordinary dual.
These efforts involve introducing a certain notion of "computability",
for interpolation functors, which is related to the notion of compu-
tability for functors on Banach spaces introduced by Herz-Pelletier
[10]. The "computable" interpolation functors behave much the way
they are expected classically to behave.

Compared to most other papers on interpolation theory, even to
those which are categorical "in spirit", ours is probably the most
categorical. We have used several important ideas from category
theory. To some extent this is unavoidable because the definition of
the dual functor requires some sophisticated ideas from category
theory. However, for the most part our use of category theory is
intentional, because we feel that interpolation theory is so functor-
ial in nature that category theory will lead to the correct notions.

For example, we dc feel that our notion of duality is the correct one



for interpolation spaces while ordinary dual spaces are not suf-
ficiently adapted to this situation. Along the same line of thinking,
we feel that the notion of a Banach module (over the algebra L(X))
should be taken as the starting point for the idea of an interpolation
space rather than the notion of an intermediate space. We believe
that this more "algebraic" approach will be important for the study of
questions arising out of interpolation theory, such as the "interpo-
lation" of many (perhaps infinitely many) spaces.

Categorical methods have by now influenced most parts of Mathe-
matics - except analysis. One reason why analysts have been unwilling
to use categorical methods is probably that the languages of analysis
and category theory are as difficult to translate as English and
Swedish. In this paper we have occasionally had to choose either an
analytical notation or a categorical one. We have made our compro-—
mise, and we hope that our paper will be readable for all.

Among our possibly diverse audience we anticipate that there will
be functional analysts who merely wish to see that the real and
complex methods are contained in a theory with better duality than
hitherto present. We have organized the paper in such a way that Part
I presents these results largely in terms of analysis. The experts in
interpolation theory will, we hope, continue further in the paper to
read about general interpolation functors in the 3-setting and their
duality. We also expect that category theorists who are interested in
applications of categorical methods to analysis will be among our
readers. They may wish to begin directly with Part II, which is meant
to be self-contained. In Chapter IV we have introduced and investi-—
gated all the categorical properties that are natural in 3, not all
of which are actually used in the paper. We have also tried to indi-
cate from time to time the extent of categorical generality inherent
in our constructions in the hope that applications of these ideas may

arise in other areas. Finally, we hope our readership will include



mathematicians who are interested in the interplay of various branches
of Mathematics. They should be particularly interested in Part III,
which is our attempt to tie together the concrete applications of
Chapters II and III with the more abstract theory of Chapters VI and
VII.

Parts of this work have been presented previously. The real
method & la Chapter II was presented at a conference on interpolation
theory held in Lund, Sweden in August 1983, and a paper [14] based on
this presentation is contained in the Conference Proceedings. Prelim-
inary versions of the more categorical aspects of the paper have been
presented at conferences in Sussex, England, Denver, Colorado and
Murten, Switzerland, and the articles [15] and [23] have emerged.

In closing we wish to make some acknowledgments. Several insti-
tutions have hosted us during some part of our four years’ collabora-
tion and we are grateful for their hospitality: our home universities
- York and Uppsala - the University of Connecticut, and McGill Univer-
sity. We wish to single out for thanks Ms. P. Ferguson of McGill
University and Ms. Paula Panaro of York University for their superb
typing of the preliminary and final versions of the manuscript,
respectively. We are grateful to the Natural Sciences and Engineering
Research Council for its support, without which this collaboration
would not have been possible. We also acknowledge the interest and
encouragement of several mathematicians, in particular, J.W. Gray,

J. Peetre, and S. Janson. Finally, we thank C. Herz, who, anticipat-

ing our common interests, introduced us to one another.



PART I

CHAPTER I

PRELIMINARIES

1. The Setting.

As we have explained at length in the introduction, we feel that
the category of Banach couples is not the best setting for interpola-
tion theory. We are proposing to work in a larger category - the
category of doolittle diagrams of Banach spaces - which is a simple
extension of the category of Banach couples enjoying the property of
being closed under duality. We believe that, despite certain diffi-
culties arising in this setting, this is the "right category" for
studying interpolation.

We begin by giving our basic definitions.

1.1 Definition. A doolittle diagram X of Banach spaces is a com-—

mutative diagram (of Banach spaces)

_ 0
A —— — XO
X = 61 l l %o
———— e 3 X
Xl - ZX
1

such that



(i) all maps are continuous linear maps and
(ii) X is both a pullback and pushout.

Condition (ii) means the above diagram is commutative and that
AX and XX are "universal" in the following sense: if Y is a
"candidate" for the top left cormner, i.e. if there are maps
fi:Y - Xi, i=0,1, such that 60°f0= 61°f1, then Y factors uniquely
through AX, i.e. there is a unique map f:Y - AX such that
f°61= fi’ i=0,1, and similarly for ZX

In practice we can give the following concrete description of
doolittle diagrams of Banach spaces. First for a pair (XO’XI) of

Banach spaces we denote by xonxl and xouxl the product and sum (or

coproduct) spaces, respectively, where

H(xo,xl)ﬂxonxl = sup("xoﬂ,uxlﬂ)

and
HxHX ux. - inf(“xon + Hxlulx = Xgt xl)
0 "1
1.2. Proposition. A doolittle diagram of Banach spaces is deter-
mined by a pair (XO'xl) of Banach spaces and a closed subspace AX
of xonxl.

Proof: Let

be a doolittle diagram of Banach spaces and let ¥¢:P - xonxl be

defined by ¢Y=(u,v). Then by the definition of the pullback, one sees



that ¢ is an isometry, so P may be considered a closed subspace of
X NMX.. More precisely, we see that P is isomorphic to the subset of
X, X consisting of those (xo,xl) such that fx0= gxl.

Conversely, if AX is a closed subspace of XONXI, we denote by
8i:Ai - X, the projection of AX to X, - Then the pushout Q in

the diagram

can be described as a quotient of XOUX1 over the subspace

aAxX = {(xo,xl)|3x € AX, Xg = Gox, X, = —61x};
cri:Xi -+ Q are the canonical maps. It is easy to verify that AX is
the pullback of the above diagram, and hence, that it is a doolittle

diagram. o

The general doolittle diagram in our paper will be denoted by X
or (XO,Xl,Ai), where AX 1is understood to be a closed subspace of

X, X

o™Xy and it will be equipped with morphisms as follows:

|
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Since the diagram is commutative, we have 60°60= 01°61. We shall
denote this frequently used map by j and call X non—-trivial if

J#0.

1.3. Examples. 1. A sum diagram and a product diagram

0
Xl —_—— XOUXl, Xl —_—_ 0
are both (trivial) doolittle diagrams. 2. Every Banach couple is a
doolittle diagram such that all the maps are injective; conversely, a

doolittle diagram the maps of which are injective is simply a Banach
couple.
Since the purpose of interpolation theory is to interpolate oper-

ators, we have to know what an operator between doolittle diagrams is.

1.4. Definition. Let X and Y be doolittle diagrams. A map T

from X to Y 1is a pair (TO’TI) of continuous linear maps such

that the following diagram commutes:

T
0
X _ Y
y 0 0 X
aX Y
) /
1 T1 1

(We are deliberately avoiding notation like 60(i), cl(?) which is

cumbersome. )

1.5. Remarks. 1. We note that when X and Y are Banach couples,
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our definition of morphism is the same as the classical definition.
2. In view of the definition of the pullback, the map

0,°T.%°8,.= 0,°T,°8 factors through AY, so there exists AT:AX - aY.

0 "0 "0 1 "1 71
Similarly, from the definition of the pushout we get ZIT:EX - ZV.

We shall denote by L(X,Y) the set of all maps from X to Y.

Actually, L(X,Y) is a Banach space under the norm

T = max(HTOH,HTlﬂ).

We may also observe from our description of pullbacks given in 1.2

that L(X,Y) is the pullback of the diagram

L(X,,Y

L(Xl,Yl) ——— L(&X,ZY).

The category of doolittle diagrams of Banach spaces and bounded
linear morphisms as described above is denoted by 3, while the sub-
category of Banach couples is denoted by B€; % will denote the
category of Banach spaces.

Since we have motivated our introduction of % by a discussion
of the better duality properties it enjoys, we should begin at least

by showing that 3 is closed under duals.

1.6 Proposition. Let X be a doolittle diagram and let X' be the

diagram



0
(£X)' —————— X5
a! [ 66
XY — 4 (&X)'
81

Then X' is a doolittle diagram, i.e. AX'=(ZX)’ and EIX'=(aX)'.

Proof: The commutativity of the above diagram is obvious. That it is
a pullback follows from the pushout property of X directly. That it
is a pushout as well is a fact, non-trivial only in the sense that it

depends on a deep theorem, namely the Hahn-Banach theorem. o

2. Doolittle diagrams, Couples, and Regular Couples.

We have observed above that a Banach couple is merely a doolittle
diagram such that all maps are injective. The main difference then
between our category % and the traditional category ®€ is that in
an arbitrary doolittle diagram the maps need not be injective. It is
natural, therefore, to consider the kernels of the maps Si, o in
X, at least one of which will be a non-trivial space if X is not a
Banach couple.

Let us denote by Kii the space ker(oi) (cxi). We may prove

the following proposition.

2.1. Proposition. Let X be a doolittle diagram. Then

ker(&o) = ker(cl)(=Kli) and ker(&l) = ker(co)(=Koi).
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Proof: Recall from 1.2 that AX may be interpreted as the following
subspace of xonxlz

{(xgsx ) logxy = ayxq}.

Let xle le' Then 1%

= 0, so Kli < ker(&o) < AX. Conversely, if y € ker(&o), then

x,= 0, so x = (O,xl) € AX. Therefore,

éox

y = (O,yl), where ¥y is such that 1Y, 0, so yle KIY. Hence,

ker(&o) c KIY. The same argument proves that Koi = ker(él). n]

We shall write KX = KofﬂKIY < AX and observe that KX = ker(j).

KX will denote the trivial doolittle diagram

=
>l
"

Letting Yi= Xi/Kii, we can define a pullback diagram

Then by the property of the pullback, j:4X » £X must factor through
AY -+ £X, which is obviously injective. It is easy to conclude that

AY = 4X/KX and that



