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CHAPTER 1

PARTICLES AND FIELDS

1. Vacuum, particle states and transition amplitudes

Any portion of the world, defined, for instance, as the enclosure of a box,
can be described in many different ways. For our purpose it is convenient to
give the number and nature of the particles present, together with the
momentum of each. Further degrees of freedom may have to be specified if
the particles possess an internal structure, and occasionally the angular
momentum will be given instead of the momentum.
~ The formalism embodying this mode of description defines first the
vacuum state, denoted by the ket |0). Particle states are constructed by
applying to the vacuum certain creation operators c*(k, 1), where k stands
for the momentum of a particle and A for any additional information, e.g.
charge, spin, needed to make the representation complete. Thus

c*(ky, Ay)c* (g, &) - . . ¥ (Kp, 4) [0) (1)
is a state with m particles, each having a given momentum and additional
degrees of freedom.

Multiplication of (1) by a function ¢ (k,, ks . . . k,,), followed by integration
over the momenta k;, k, . . . k,,, produces a state in which the particles are
localized in space. Whereas the function ¢ can then be regarded as a momen-
tum wave function, in the non-relativistic limit its Fourier transform can be
identified with the ordinary Schroedinger wave function p(r;, ry...r,) (r,
denoting the position of the i-th particle).
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Interactions are the agents which induce transitions from one state to
another. The probability of a certain transition taking place is proportional
to the square of the modulus of the transition amplitude

(0] <Ky, 47,) - . . c(K'y, Ay)Uc* (ky, 4y) - . . * (K., 4,) [0). )

The state vector to the left of the transition operator U is a bra, the
conjugate of the ket c* (k';, 2'}) . .. c*(K',, 4',) |0). It results from the latter
by the operation of Hermitian conjugation, which replaces the ket vacuum
|0) by the bra vacuum (0|, each creation operator by its Hermitian conjugate,
which is a destruction operator, and reverses the order of all the factors t.

U is a Lorentz invariant functional of the interaction Lagrangian £ (x),
which is always Lorentz invariant of its own accord and a product of field
operators §(x) (x = r, ¢). These are related to the creation and destruction
operators before mentioned in much the same way as a function is to the
coefficients of its Fourier expansion. The relationship will be explicitly
written in the following sections, and lists of Lorentz invariant interactions
given in appropriate places.

Expanded in powers of the interaction, the transition operator it given by

u=3

=] nl

"n
——J.d‘xl...d‘z,,(.‘t’(zl)....‘Z’(z,,))+, (3)
where d*z = dr df, and the integrations cover the whole space-time. The

chronological ordering ( ), signifies that for any two factors #(z,) and
Z(x.), £ (x;) must take the left of ¥ (z,) if¢; > ¢,, and the right if ¢, < ¢,.

2. Spinless particies
2.1. CREATION AND DESTRUCTION OPERATORS

For neutral tt spinless particles the creation and destruction operators
c*(k) and ¢(k) are functions of the momentum only. The field operator ¢ ()
is Hermitian and is given by

$(z) = X [c(k)e!® = tc*(k)e~!=], (4)

where (k, z) =k ' r —otf, and o = VKk¥+{u?, u being the mass of the par-
ticles.

We have introduced the abbreviation ¥ = 3, (2Vw)™, V being the
volume of the box in which the particles are contained.

t The Hermitian conjugate of a c-number y = a+if (x, f real) is the complex conjugate
y* = a—1if. If ¢, and ¢, are destruction operators, the Hermitian conjugate of the operator
€ = ¢ +ic, is ¢* = ¢;*—1&*. An operator is said to be Hermitian when it is equal to its
Hermitian conjugate.

tt Or rather, particles which are in all respects indistinguishable from their antiparticles.
In Ch. VII we shall mention an uncharged spiuless particle, the 6, meson, which is not identical
with its antiparticle 8,. Therefore the field operator of (6,, 6,) wili be non-Hermitian, and must
be cxpanded according to eq. (J).
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For charged spinless particles, two kinds of creation and destruction
operators must be introduced, a* (k) and a(k) for positive particles (particles)
b*(k) and b(k) for negative particles (antiparticles). The expansion of the
field operator ¢(x) contains both,

$@) = 3 [a(k)e®a 4b* (k)i (5)
In contrast with the case of neutral particles, (5) is not Hermitian. This is
true of any field of charged particles, the reason being that only with a non-

Hermitian field is it possible to construct a non-vanishing interaction t with
the electromagnetic field.

2.2. ANGULAR MOMENTUM REPRESENTATION
If the energy and the angular momentum are chosen as degrees of freedom
for the individual particles, appropriate creation and destruction operators
c*(k, [, m), c(k, I, m), ... must be introduced * 1°). Then, for instance,
c* (&, [, m)|0), a*(k, [, m)|0), b*(k, [, m) |0) _
are states with one (neutral, positive, negative) spinless particle of energy

w="Y kH—;E and angular momentum quantum numbers 1% = /(/4-1),

[, = m. An expansion for the field operator equivalent to (5) is 3 19)
(@) = 3 [alk, L) Y™ (0, Je—ot-tb*(k, L mY{™* (0, $)e]  (6)

klm

{for neutral particles a — ¢, b — ¢). Here 0 and ¢ are the polar angles of r,

Y{™ (6, ) is a spherical harmonic defined so that Y{™* = (—1)"Y{™)

and X, stands for 2, (20)7¥ g, (r), where the radial functions g, (#) are

given by :

~1

mtk
gnc(")z‘/;l‘é'fui(k')r (7)

and are solutions of the radial Laplace equation.
R is the (large) radius of a spherical box, and J,,; is a Bessel function.
The application of the differential operator ([J2—pu?) to each term of (4)
(6) and (6) gives zero, so that

(O*—u*)d(x) = 0. (8)
Comparison of egs. (5) and (6) yields the relation
n1/8R o +t ' '
a*(k) = ‘-l/—— 2 X dYMH(Kk)ar(k, 1, m) (9)
k V- 1=0 m=—1
between creation operators in the momentum representation and those in
t Which interaction may be a multipole of any order, so long as it discriminates between

particles and antiparticles. It is not, however, known whether the distinction between the
mesons &, and 0, is of electromagnetic origin (see footnote p. 3).



PARTICLES AND SYMMETRIES 309

the angular momentum representation. Applying the two members of (9) to
the vacuum |0), a relation ensues between corresponding one particle states.

The angular momentum representation may also be used for the descrip-
tion of particles acted upon by a central static field. The creation and
destruction operators then refer to non-free particles of given angular
momentum and energy. The expansion (8) is still valid with g,, replaced by
the solutions of a radial equation including the static potential.

2.3. TWO-PARTICLE STATES
Two-particle states are generated by operating on the vacuum with two
creation operators. Thus
a*(k)b* (k') |0) (10)
is a state with one particle of momentum k and one antiparticle of momen-
tum k’, and
a*(k, I, m)b*(R', ', m’) |0) (10%)
is a state with one particle with the quantum numbers (&, /, m) and one anti-
particle with (&’,Z’, m’) in the angular momentum representation.

More interesting is the construction of a particle-antiparticle state of
relative angular momentum (L, M) in the centre-of-momentum frame. This
can be done by superposing states (10) with k' = —k. The expression for
the state in question is 3)

|k, L, M) = [ 2, Y (k)a* (k)b*(—K) |0), (11)

where Y{¥) (k) is a spherical harmonic whose arguments are the polar
angles of k, and df2, is an element of solid angle around k. Using the Clebsch-
Gordan coefficients '), states with any number of particles and antiparticles
and given total angular momentum can be formed.

2.4. BOSE-EINSTEIN STATISTICS

Particles of spin zero obey the Bose-Einstein statistics, a property which
is formally expressed by the commutation relations t among creation and
destruction operators, «

(c(k), c*(k')] = [a(k), a*(k')] = [b(k), b* (k)] = du

all the other commutators being zero.

Let us consider, for instance, neutral particles. There is no restriction on
the number of particles of momentum k in the state c*(k)c* (k). . . c*(k) |0),
since [c*(k), c*(k)] = 0 is only a trivial identity. On the other hand, this
state is an eigenstate of the operator N(k) = c¢*(k)c(k) (number of particles
of momentum k) whose eigenvalue is the number of factors ¢*(k) which
operate on the vacuum. For example, omitting k for brevity, Nc¥*c* {0) =

t Here [a, ] = ab—ba, Sk (= 1 for k =k’, = 0 for k #Kk’).
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c*cc*¥ c*|0) == c*(14c* c)c*|0) = c* c* cc* |0)4-c* c* |0) = c* c* (1+c*c) |0)+
c*c¥ |0) = 2c*c* |0) since ¢ [0) = O (destruction operators give zero when
applied to the ket vacuum; note, however, that (0c 7 0, since it results
from c*|0) by Hermitian conjugation).

3. Particles of spin 3

3.1. SPIN STATES AND SPIN MATRICES

We denote by a*(k, 1), a(k, 1) the creation and destruction operators for
a particle of momentum k and with spin either parallel, A = %, or antiparal-
lel, A = |, to the momentum. The analogous operators for an antiparticle
will be b*(k, 4) and b(k, 4).
~ Particles of spin 4 obey the Fermi-Dirac statistics. The creation and des-
truction operators satisfy anticommutation 1 relations :

{a(k, 1), a*(K', 2')} = {b(k, ), b* (K, 1)} = dx Ok
All the other anticommutatores are zero. E.g.,
{a*(k, 1), a*(k’, 1)} = 0,

which, for k = k" and 4 = 2’ reduces to a*(k, 4)a*(k, 1) = 0, so that states
with more than one particle of given (k, 1) do not exist.

The operator N(k, 1) = a*(Kk, 4)a(k, 1) represents the number of particles
of momentum k and spin orientation 4 and has the eigenvalues 1 and 0, for
the eigenstates a*(k, A)|0) and |0), respectively. Similarly N{k, 1) =
b*(k, 1)b(k, 1) represents the number of antiparticles of momentum k and
spin orientation A.

The expansion of the field operator §(z) must be done with care. In
analogy with eq. (5)

— Z [a(k, l)u(k, A)e{(k,a)_{_bt (k, ).)v(k, l)e-—t(k,z)]. (12)

where now 3 = 3, 3, (2Vw) }includes a sum over the direction of the spin.
If u(k, 2)e*™® .and v(k, 2)e—***) are solutions of the Dirac equation,
one has also

(72 3 +m) ¥ = 0. (13)

We here anticipate that, whereas u(k, 4)and »(k, | ) are positive energy
solutions for momentum k and spin parallel and antiparallel to k, respective-
ly, v(k, 4) and »(k, | ) are negative energy solutions for momentum —k
and spin parallel and antiparallel to —k, respectively. The reason for this is
that when we insert eq. (12) into, e.g., the expression for the total momen-

¥ EHeie {a, b} = ab-+ba. Cf. footnote on page 5 for the definition of Srre. That of Jype is
pow Oy = LSjy = dyp = 0. '
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tum P of the field, of the form [ ¢* ... § dr, by virtue of the anticommuta-
tivity of the creation and destruction operators we find

P = 3. [N(k, 1) X momentum of u(k, 1)
—N(k, 1) X momentum of v(k, 1)]

where N and N denote the numbers of particles and antiparticles. Clearly the
momentum of v(k, 4) must be —Kk, if P is to be the sum of the momenta of
particles and antiparticles present. A similar consideration would hold for
the cnergy and the spin.

Since the y, are 4 x4 matrices, u(k A) and v(k, 1) are four-component
c-numbers, and Y (x) four-component operators.

It is to be borne in mind that the form of the y-matrices is not unique 8).
If y,and »’, (=1, 2, 3, 4) are two sets of Hermitian matrices satisfying
the anticommutation relations

YuVstv, v =20, (14)

a unitary matrix exists connecting them, y’, = Sy, S-1, and for our purpose

are entirely equivalent. ‘

The following are the most usual choices for the y’s (with y = (y;, y3, 7a),
and we give also y5 = p; ¥ Y3 ¥s):

(Paun) 3,7) Y =pyX0, e = p X1, Vs = —"PzXI;

(Rramers) 45) y' = —p,x00 ¥4 =poxD, Vs =—pxli o

(Majorana) 0) yul = —IXO',, 7’“2 = —p"XG,, 7”3 = IXO‘,,
Yia=pXay, V5= paXo,.

We have introduced the matrices

IR R I B R

and p,, p,, p,, I, which are defined in the same way. If the four components
of u, say, are written u, = %, ;, g = w_, 1, Uy =%, _;, 4y = %_, _; the o’s
operate on the first indices as they would on the two-components of a non

relativistic spin function, whereas the p's operate on the second indices in the
same manner. For .instance

/ Uy Uy U,
PaX 0y = p, = ; (17)
Uy U3 231

The main advantage of the Pauli set is that y, is diagonal, which, at low
energy, causes the components %, and %, to be large (proportional to w-+m
~ 2m) and #, and %, to be small (proportional to w—m).
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In the Kramers set, the matrix yg, which occurs in the coupling of spin }
particles (e.g., mucleons) with pseudoscalar particles (e.g., m-mesons), is
diagonal. The use of this set is convenient in studying space inversions.

Finally, the Majorana matrices "', 9’3, ¥"’s are real like the space coor-
dinates =z, ¥, z and y", is imaginary like z, = 7¢ 1. All four matrices are, of
course, Heymitian. Thus 'y, ¥",, '3 are equal to their transposes, since the
Hermiticity condition a;, = a,%; reduces for them to @, = a,,, whereas y"’,
is equal to minus its transpose. The formula y,* = —y",¥"",»"4, where T
denotes transposition, concisely expresses this property. The Majorana set
turns out to be the most convenient when defining the operation of particle-
antiparticle conjugation.

For completeness we add the expressions for the components of the spin
matrices in the different sets:

(Pauli) s =3} Xo,, Ixo,, Ixa,);
(Kramers) s’ =3} Xo,, Ixo,, Ixo,); (15')
(Majorana) s” = }p, X 0,, Ixe,, —p,Xa,).

The reader may find it useful to have in full the relations between the
three sets of matrices (15). These are

Y';z = Sx,ﬂ’p S;i,lp: V”,‘ = S:\I,KV,/‘S;t:,lK' 7’";; = SM,P)’;;S;r,lé’ (18)
with ft

1 .
SK,P = 75 (1+1PV)P:¢'
elin/4 i
SM,K = \/2 (1 '+1Py Uv)' (19)
efn/4 . .
SM, P = 75 (1+7’Pv Gv) (1+"PV)P:::

(the inverse matrices being the Hermitian conjugates of these, e.g.,
Sx'r = (1/4/2) p,(1—ip,)). The corresponding transformations for the field
operator ¢ are '

"" = SK,P4’: ‘I’” = SM,K‘V: "’” = S.. p‘l’- (20)
3.2. EXPLICIT SOLUTIONS

Tables 1 and 2 show the components of the solutions of given momentum
for the three sets of y-matrices. The symbols used are

1 i.e., all the elements of p”/;, 9", 9”’y are real numbers, while those of y*/, are purely imagin-

ary. Lo
t For simplicity we write p, 0, instead of p; X g, in these formulae, and replace unit matrices
by 1.
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‘TaBLE 1
Particle solutions

VEZulet) | veuly) || waed) | way ! Vi | Yo
W) | alets) | —prets) | e —sp || ca—isB | —spr—icar
@ | Ble+s) atets) || B | st || cptisa st —icf*
@ | al—s) Bre—s) | s | —epr || s« | isar—cpe
@] Ble—s) | —aters) | 8 | a || —iextsg | isprtcar

TABLE 2
Antiparticle solutions

Vo) | vk, ) | vied) | v || YR | Yy
(1) | —B*(c—s) ale—s) || sp* | ca sp* —ica* ca+isf
@ are—s) | Ble—s) || —sx | B — s —ich B—isa
@ | Bret+s) | ats) || —epr | —sx || —isat—cpe icf—sx
@ | —atc+s) | Bets) ||t | = || —isprrear | —ica—sp

c=cos—x—, s=sin1-, ctgx=l—lf'-, k, = k cos 0,

2 2 m (21)

0 . 5
ko+ik, = ksin 0 - e'?, o = cos e~¢/3, 8 = sin " g'/3,

It is easy to verify that 4 and | correspond to a spin orientation parallel
and antiparallel to k for the particle solutions, and to a spin orientation
parallel and antiparallel to —k for the antiparticle solutions. For example,
for the Kramers set

%(s'-k)u’(k, 1) =3k 1),
: (22)
(8 Kuk )= -3k |),
and
%(s’ —k)v'(k, 1) =30k, 1),
: (22')

7 & =K'k )=}k )
Another important point is that, for the Majorana set, the particle and
antiparticle solutions are the complex conjugate of one another,
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(walk, 1))* =00k, 1),
(waik, $))* =0"0(k, {) (x=1,23,4). ,
That this must be so can be seen by writing the Dirac equation for the
two kinds of solutions,
(Zy" + k—wy" ;+m)u'' (k, ) = 0,
(—iy"” - kK4twy”s+m)v"' (k, 1) = 0,
and by noticing that, y"’ being real and »", purely imaginary, the second
equation results from the first by complex conjugation (not to be confused
with Hermitian conjugation).
The relationship between particle and antiparticle solutions is more
complicated for the other two sets. Taking .

v, (25)
where y is a matrix and y is a four-component quantity, to mean a quantity
with components « = 1, 2, 3, 4 given by

(23)

(24)

'/"ﬂ‘ 7’/34 (26)
we see that
v(k, 1) = u*(k, 1)y, v (k, 1) = u'*(k, 4)y’, (27)
and conversely
u(k, 1) = v*(k, 4)y,, u' (k, ) = v'*(k, 1)y',. (27")

3.3. MAJORANA'S NEUTRINO THEORY

Some neutral particles of spin } (e.g. neutrons) are distinguishable from
their antiparticles by virtue of their electromagnetic properties, such as their -
magnetic moment. ' '

The Majorana theory of neutrino % ®) concerns itself with particles which
~are identical with their antiparticles. The transition from the ordinary
theory to the Majorana theory is effected by writing

a—c, a* —c*¥, b-—g, b* — c* (28)

in eq. (12) i.e. by identifying the creation and destruction operators for
particles and antiparticles. The consequences of doing so are particularly
evident if Majorana’s own set of y-matrices is employed. In fact, from (12),
(28) and tables 1 and 2, we find

¥ i’*
SRR "
vil - |

¥y e

14
so that the components of the field operator for Majorana particles are
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Hermitian for the Majorana set. For the Pauli and Kramers sets we have

Y, = "I’ﬂ* V2, pa> ‘J"’a = "’:ﬁ’* ?’2,;74 (30)
so that
*1 —"l’4* 1‘1
“!"2\| — { ‘5;3* v ‘!’2 \ (31)
Y3 { Po* | %"‘J
\h/ —¥y* —¥y*
in the former, and '
‘!"1 \ ‘!”1 \'
"”2 \",2 ’
= , 31
\l"a -4’2* ( )
Ve )

in the latter. This shows that the Majorana theory uses only two independ-
ent non-Hermitian components, or four independent Hermitian components
in the Majorana set.

3.4. ANGULAR MOMENTUM REPRESENTATION

In the angular momentum representation, particles of spin } are described
by the eigenvalues 7(j+1) of the square of the total angular momentum
j=14s (j=1%4,...) and by the component j, = m(m = +}, +3,
...). For each pair of values 7 and m and a given sign of the energy, the Dirac
equation is known to have two independent solutions (according as to whether
j = IF4%, ! being the orbital angular momentum, they will be denoted by
j#). For positive energy and for the Pauli set of y-matrices these are of the
form 3) . . :
al® y;:;-i)
e y}:;i)
PNES) Y};‘;*}
id®y b

Where two signs occur, only the upper signs or the lower signs must be taken.

u(k, {¥,m; r, i) = . a—twt (32)

The (real) coefficients a'®, ..., d% need not be specified. For what
follows it is, however, necessary to notice that
a® (—m) = Fb¥(m), FH(—m)= FdF (m). (33)
It follows immediately from Y, (—r) = (—1)'Y,™)(r) that
w(k, 19, m; —r,t) = (—1)=y, u(k, j&,m;r, 1), (34)

from which it is apparent that, j being a half integer, the solutions with
{*) and §-) are of different parity.
Antiparticle solutions for j, = m (which are negative energy solutions
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for j, = —m) are given by
id&®) y;;f*n,—})
ic® yizm+h)
() gy = (—1)" ¥} . g—iw
v(k, j¥, m; 1, 1) = (=1 bk Y;;r—i) eiet (35)
a'® y{pHb
and are related to the particle solutions by the equation
v(k, 75, m; r, 1) = u*(k, ¥, m; T, £)y,, (38)

as is easy to show by using the properties of the spherical harmonics. Eq. (38)
is analogous to (27) for the momentum representation.
The analogue of (34) is
v(k, {2, m; —r, 1) = (=1)T y,0(k, {*, m; 1, ). (37)
The expansion of the field operators is .
V=3 [a(k, §'*, m)u(k, ;'¥), m; r, t)+b*(k, {2, m)u(k, ¥, m; 1, ¢)], (38)

which defines creation and destruction operators for particles and anti-
particles characterized by the quantum numbers &, {&, m.

3.5. TWO-PARTICLE STATES

To construct state vectors for two particles of spin §, we proceed as in the
case of spinless particles. For a particle and an antiparticle in the centre-of-
momentum frame, the most general state of definite energy is

[ a2 $(K; s.5,)a* (K, s)b*(—k, 5,)  [0), (39)

where now it is convenient to use as one-particle states those of given mo-
mentum and spin parallel and antiparallel to the z-axis (s = 41). The
corresponding creation operators are related to the creation operators for
spin parallel and antiparallel to the momentum by the formulae

a*(k, 1) = a* a*(k, 1 )—pa*(k, ), (40)
a*(k, 2) = p*a*(k, 1)+aa*(k, |) (a1)

9

(non-relativistic).

The magnitude of the total spin S= s,+s, of the particle-antiparticle
system is a good quantum number, so that we have triplet and singlet states.

For the singlet states, the orbital angular momentum L is also a good
quantum number. For the triplet, orbital angular momenta are mixed to
form 3P, 35,4-3D,, %P,, *P,+-3F,, 3D, etc. states. (The subscript denotes the
total angular momentum J.) In both cases, the momentum wave function
has the property

¢(—'k! sa'.sb) = (_1)L¢(k’ Saab)r (42)
which holds also for mixtures such as 35;4-%D,, since the orbital angular



PARTICLES AND SYMMETRIES 317

momenta of the two components differ by 2. On the other hand, for inter-
change of s, and s,, ¢(kK, s,s;) is symmetrical for the tnplet antisymmetrical
for the singlet. The non-relativistic expressions

6, . s i = +6n . =1 Yy,
Y‘LM) [as,,l 6!,,, L =l % 1\/2 = 1 — ’ aa.- -1 63;-—1] (43)
8y,1 04, -1—0, 16 )
Y}_M) 8,1 Vs, lvz 85,71 Vg, 1 (44)

for the triplet (no mixture) and the singlet satisfy. these general conditions.

4. Photons 11)
4.1. POLARIZATION STATES

For a photon of momentum k two independent polarization states are
possible, from which states with any other polarization can be constructed
by linear combination. They are represented by the unit vectors e(k, 1)
(A =1, 2) perpendicular to k and to each other. Creation and destruction
operators a*(k, 1) and a(k, 1) can be defined, so that

a*(k, 2) 0) (45)
is 4 state with a photon of momentum k and polarization 4.
The field operator is the vector petential, which can be represented as

A(z) = 3 ek, 1) [a(k, J)e'**) fa*(k, A)e~ k=], (46)
where

1
>=2 . ‘_\/iﬁ/k:o and &, = |k|.

Consider now the simple case of two classical waves both circularly
polarized. The first,
AR = A, cos (kz—kyt+6R),
AR = A, sin (kz—kyt+0%)
propagates with wave length 2z% in the z-direction and has right-circular
polarization, and

(47)

AP = A, cos (kz—kyt+0"), -
AP = — A, sin (kz—kyt+0") (48)

has left-circular polarization and propagates in the same direction as the first.
We compare (47) and (48) with the vector potentials for two waves both
propagating in the z-direction, one

i AN = 4 e(l)eikr—kot) 4 c c. (49)
with e(1) = (1, 0, 0), polarized in the z-direction, the other,
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A® = A e(2)eftks—k 1t cc, (50)
with e(2) = (0, 1, 0), polarized in the y-direction. We can now write
AR %e(R)e“"’""'“"-}-C.C- (51)
and
AL — %e(L)e{(kl—k.¢+"’)+c.c' (52)
Here '
_e(1)—ie(2) __e(l)+1e(2)
e(R) = T , e(L) = T (63)
and

e*(R) -e(R) =e*(L)-e(L) = 1.
We can now proceed to define circularly polarized photons. We introduce
1 .
alk, R) = WE [a(k, 1)+7a(k, 2)] (64)

as the destruction operator for a right-circular photon of momentum k and
polarization vector

ek, R) = —\;—2 [e(k, 1)—ze(k, 2)], (55)
and
ak,L) = \/Lz [a(k, 1)—za(k, 2)] (586)
and '
1 :
ek,L) = —\73 [e(k, 1)+re(k, 2)] (57)

for left-circular photons. Then the right member in the expression (46) for
the vector potential can be rearranged to read
A(z) = ¥ {[e(k, R)a(k, R)+e(k, L)a(k, L)]e!*=
+[e*(k, R)a*(k, R)+e*(k, L)a*(k, L)]e-**=}  (58)
States with one circularly polarized photon of momentum k will be given
b,
d a*(k, R) |0) and a*(k,L)|0)

according to whether the polarization is right or left. By egs. (64) and (56)
they can be expressed as superpositions of states with linear polarization.

4.2. TWO-PHOTON STATES

Later on, in connection with the selection rules for positronium
decay, we shall have to consider states with two photons of equal
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and opposite momenta. For simplicity we shall assume that the
momenta are along the z-axis, and denote by a*(+, R), a*(—, R), a*(+, L),
a*(—, L) the creation operators for photons with right- and left-circular
polarization, travelling in -the positive (+) and negative (—) z-direction.

By applying to the vacuum state the product of two of the above opera-
tors we can construct the four states |4+R, —R), |+L, —L), |+R, —L),
|+L, —R). It is convenient, however, to consider mixtures of the first two:

[+R, —R)+[+L, —L) = [a*(+, R)a*(—, R)+a*(+, L)a*(—, L)] |0)

= [a*(+, 1)a*(—, 1)—a*(+, 2)a*(—, 2)] [0), (59)
[+R, —R)—|+L, —L) = —i[a*(+, 1)a*(—, 2)+a*(+, 2)a*(—, 1)] |0).
The first represents two photons travelling in opposite directions with planes
of polarization always parallel. There is an equal chance that the planes of
polarization are either both in the z-direction or both in the y-direction. The
second represents the state of two photons having planes of polarization
always perpendicular to one another. On the other hand
[+R, —L) = ${a*(+, 1)a*(—, 1)+a*(+, 2)a*(—, 2)

+ia*(+, 1)a*(—, 2)—za*(+, 2)a*(—, 1)] |0),
[+L, —R) = }{a*(+, 1)a*(—, 1)+a*(+, 2)a*(—, 2)

—ia*(+4, 1)a*(—, 2)+1a*(+, 2)a*(—, 1)] |0)

are states where there is an equal chance that the planes of polarization
are parallel or perpendicular to one another.

(60)

¢21. TRANSFORMATION PROPERTIES OF PHOTON STATES
We cannot dispense with a few remarks about transformation properties
of photons under space rotations, later to be used for deriving selection rules
for the decay of particles into two photons.
A rotation by the angle ¢ around the z-axis
z' = zcos¢ + ysin ¢, .
y = —xsing 4 ycos g, (1)
2 =2z
transforms the classical vector potential as
A'y,=A,cosd + A, sin ¢, A
A'y= —A.sing + A, cos ¢, (62)
. A',=A,. '
In the quantized theory the rotation is associated with a unitary operator
Ry such that

R, AR;! = A’ (63)-
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is the transformation law for the vector potential operator, A’ being expres-
sed in terms of A through (62). In order to determine Ry we consider one
typical term in the expansion (58). According to (61) and (62) the polariza-
tion vectors e(k, R) and e(k, L) transform ast
e'(k,R) =e*-e(k, R),
e'(k,L) =e*-e(k, L),
if k is in the 2-direction. For (63) to be realized we must have
Ry[e(k, R)a(k, R)]JR* = e’'(k, R)a(k, R) (65)
and similarly for left polarization, and therefore '
a(k, R)R;' = e*-a(k, R),

(64)

. 66
Rya(k, L)R;! = e - a(k, L). (06)

For the creation operators we have
Rya*(k, R)R;! = e*® - a*(k, R) (67)

Rsa*(k, L)Rg! = e~** - a*(k, L).
We now apply Ry to states with one and two photons. For instance

Ry a*(l;, R) |0) = Rya*(k, R)R; - R, |0). '(68)
If we assume that the vacuum is invariant under rotations,
Rg [0) = 10), . (69)
comparing (68) with (67) we find
R4 a*(k, R) |0) = e’ - a*(k, R) |0) (70)
and similarly » v
Rya*(k, L) [0) = e~*: a*(k, L) |0). (71)

Thus states with one right or left circularly polarized photon moving along
the z-axis are eigenstates of R, with eigenvalues e~** and e*+*# respectively.
It is useful to remind the reader of the connection between the angular
momentum component in a certain direction, say z, and the operator Ry for
rotations around that direction,

- (&) (72)
. t \d¢ /¢=0
It is apparent from this formula and from (70), (71) that a*(k, R) |0)
and a*(k, L) |0) are photons with J, = -+ 1 respectively.

The discussion of two photon states follows similar lines. We have

Ry{I+R, —=R)+|+L, —L)} = |+R, —R)%|+L, —L) (73)

Rg|+R, —L) = e**|+R, —L), (73°)

Rsi+L, —R) = e3¢+ L, —R). (78")

! The exponentials e+i(k,2) are invariant under rotations.



