Lecture Notes In

Computer Science

Eaite.d"byAG. Gobs and J. H'armianis'l !
244

Advanced |
" Programming Envuronments "

Proceedings: of an International Workshop
Trondheim Norway, June 1986

-y
K

| IFIP

' Edited by |
- ‘Reidar Conradi, Tor M. Didriksen and Dag H. Wanvuk

SpringerVerlag

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

244

Advanced
Programming Environments

Proceedings of an International Workshop
Trondheim, Norway, June 16—18, 1986

NS
Ls

IFIP

Edited by
Reidar Conradi, Tor M. Didriksen and Dag H. Wanvik

SpringerVerlag

Berlin Heidelberg New York London Paris Tokyo

Editorial Board
D. Barstow W.Brauer P.Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Editors

Reidar Conradi

Tor M. Didriksen

Division of Computer Science, Norwegian Institute of Technology
N-7034 Trondheim-NTH, Norway

Dag H. Wanvik
RUNIT/SINTEF, Norwegian Institute of Technology
N-7034 Trondheim-NTH, Norway

International Workshop on Advanced Programming Environments

Organized by: IFIP Working Group 2.4 on Systems Programming Languages
in cooperation with ACM SIGPLAN/SIGSOFT

Sponsored by: Division of Computer Science (DCS), NTH
Computer Centre at the Univ. of Trondheim (RUNIT)
Kongsberg Véapenfabrikk, Branch Office Trondheim
Royal Norwegian Council for Technical and Scientific Research (NTNF), Oslo
Norsk Hydro, Oslo
Norwegian Teleadministration's Research Lab, Kjeller/Oslo
Integrert Databehandling A/S (IDA), Oslo
International Business Machines, Oslo

CR Subject Classification (1985): D.2.6, K.6.3

ISBN 3-540-17189-4 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-17189-4 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Advanced programming environments.
(Lecture notes in computer science; 244) Papers presented at the International Workshop on
Advanced Programming Environments, organized by IFIP's Working Group 2.4 on Systems
Programming Languages in cooperation with ACM SIGPLAN/SIGSOFT, sponsored by Division of
Computer Science (DCS), NTH and other organizations. 1. Electronic digital computers—
Programming—Congresses. |. Conradi, Reidar. II. Didriksen, Tor M. lll. Wanvik, Dag H.

IV. International Workshop on Advanced Programming Environments (1986: Trondheim, Norway)
V. International Federation for Information Processing. Working Group 2.4 on Systems Program-
ming Languages. VII. ACM Special Interest Group in Programming Languages. VIIl. ACM Sigsoft.
IX. Norges tekniske hegskole. Division of Computer Science. X. Series.

QA76.6.A3327 1986 005 86-31536

ISBN 0-387-17189-4 (U.S.)

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort”, Munich.

© Springer-Verlag Berlin Heidelberg 1986
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210

PREFACE

Many Programming Environment (PE) conferences have been arranged over the last
years, and more will come. Why this one?

We feel that several of these have failed to bring industry and academia together in
a fruitful dialogue, partly because of the topics covered. A traditional conference
also leaves too little time for plenary discussions. Since IFIP's Working Group 2.4
on Systems Programming Languages (with 29 members) had planned a meeting on June 10-
13 1986 in Trondheim, Norway, some Norwegians conceived the idea to arrange a
conjunctive workshop. Trondheim hosts the largest university and research center in
computers and electronics in Northern Europe, totalling over 500 scientists.
Trondheim in mid-June also represents an attractive site for a combined arrangement.

IFIP WG 2.4 accepted this idea by mid-October 1985, but did not have the time or
resources to arrange a traditional conference with inpvited and refereed papers. A
true workshop cannot have a too large attendance, either. We therefore decided on 6-
7 major subjects, 30-35 invited speakers, and an additional open, but screened
audience of 70-75 persons. Members of the working group were given first priority to
attend, in case of space shortage.

Ry November 15 1985 we had acquired sufficient external support for travel grants
and had received indications from ACM SIGPLAN/SIGSOFT about "cooperation”. A formal
workshop committee was then established and we invited 50 selected persons to submit
papers. By January 15th 1986, a preliminary workshop program was set up, based on 35
submitted abstracts - whereof 3 from WG 2.4 members. The authors were instructed to
submit a draft paper by April Ist, and a full paper by May 25th. The draft versions
have been commented by colleagues in Trondheim and Karlsruhe, at SEI/CMU and Genrad.
Final versions of the papers were received by Aug. Ist.

We sent out invitations to about 2000 persons, based on mailing lists from previous
ACM conferences and other available 1lists. The workshop was advertised in ACM
SIGPLAN Notices, in ACM Operating Systems Review, and on electronic bulletin boards
(SW-ENG). We received 150 sign-ups by mid-April, twice as many as we could
accomodate. See the enclosed attendance list.

The workshop committee would like to thank the people who made this arrangement
possible: speakers, participants, referees, sponsors, WG 2.4 members and observers,
local staff, and NTH's conference secretariat. The editors would also like to thank

Sharon Berg and M@ystein Valle for proofreading and typing of the discussion
transcripts.

Trondheim, November 1986
The editors:

Reidar Conradi Tor M. Didriksen Dag H. Wanvik

Workshop committee

William Waite
Mary Shaw
John Nestor
Lynn R. Carter
Reidar Conradi
Tor M. Didriksen
Dag H. Wanvik
Else J. Svorkas
Mari Saeterbakk

Univ. Colo., Boulder
CMU, Pittsburgh
SEl, Pittsburgh
Genrad, Phoenix
DCS/NTH, T.heim
DCS/NTH, T.heim
RUNIT, T.heim
DCS/NTH, T.heim
NTH, T.heim

workshop chair, WG 2.4 chair
program chair

ass. program chair

WG 2.4 secr.

organizing chair, editor

ass. organizing chair, co-editor
ass. organizing chair, co-editor
treasurer

local arrangements

TABLE OF CONTENTS

An asterisk (*) marks 10 min. panel papers, otherwise 25 min.

PROGRAMMING-IN-THE-SMALL

tSource Level Debuggers:
Experience from the Design and Implementation of CHILLscope
Svein O. Hallsteinsen, RUNIT, NOR

*Data-Oriented Incremental Programming Environments
Peter B. Henderson, SUNY at Stony Brook, USA

*Context-sensitive editing with PSG environments
Rolf Bahlke, Gregor Snelting, Tech. Univ. Darmstadt, FRG

*Editing Large Programs Using a Structure-Oriented Text Editor
Ola Str¢gmfors, Univ. of Linkgping, SWE

*0n the Usefulness of Syntax Directed Editors
Bernard Lang, INRIA, FRA

*PegaSys and the Role of Logic in Programming Environments
Mark Moriconi, SRI International, USA .

*GARDEN Tools:Support for Graphical Programmxng
Steven P. Reiss, Brown Univ., USA . . & @

Discussion.

PROGRAMMING-IN-THE-LARGE

SunPro: Engineering a Practical Program Development Environment
Evan Adams, Wayne Gramlich, Steven S. Muchnick, Soren Tirfing, SUN
Microsystems, USA e e e e e e e e

Information Structuring for Software Environments
Jeremy H. C. Kuo, Kevin J. Leslie, Michael D. Maggio, Barbara G. Moore,
Hai-Chen Tu, GTE Laboratories, USA e I TP -

An Architecture for Tool Integration
Simon M. Kaplan, Roy H. Campbell, Mehdi T. Harandi, Ralph E. Johnson,
Samuel N. Kamin, Jane W. S. Liu, James M. Purtilo, Univ. of Illinois, USA

*Software Development in a Distributed Environment, The XMS System
Ragui F. Kamel, BNR, CAN

*The SAGA Approach to Automated Project Management
Roy H. Campbell, Robert B. Terwilliger, Univ. of Illinois, USA

13

26

39

47

52

59

73

86

97

112

142

vi
*A Process-Object Centered View of Software Environment Architecture
Leon Osterweil, Univ. of Colorado, USA

tSoftware Development Environments: Research to Practice
Robert J. Ellison, Carnegie Mellon Univ., USA .

Discussion.

CONFIGURATION/VERSION CONTROL

A Model of Software Manufacture
Ellen Borison, Carnegie Mellon Univ., USA .

tProtection and Cooperation in a Software Engineering Environment
J. Estublier, L.G.I. C.N.R.S., FRA

*The Integration of Version Control into Programming Languages
J.F.H. Winkler, Siemens, FRG - .

Discussion.

TOOL INTEGRATION

IDL: Past Experience and New Ideas
Joe Newcomer, Carnegie Mellon Univ., USA

Supporting Flexible and Efficient Tool Integration
Richard Snodgrass, Karen Shannon, Univ. of North Carolina, USA

Views for Tools in Integrated Environments
David Garlan, Carnegie Mellon Univ., USA

Discussion.

SOFTWARE ENGINEERING DATABASES

DAMOKLES - A Database System for Software Engineering Environments

Klaus R. Dittrich, Willi Gotthard, Peter C. Lockemann, FZI Karlsruhe, FRG .

Toward a Persistent Object Base
John R. Nestor, Carnegie Mellon Univ., USA

*Choosing an Environment Data Model
Andres Rudmik, GTE Comm. Syst., USA .

*Version Management in an Object-Oriented Database
Stanley B. Zdonik, Brown Univ., USA .

156

2517

290

344

353

vil

Discussion.

PROGRAM REUSE AND TRANSFORMATIONS

Abstract DataTypes, Specialization, and Program Reuse
William L. Scherlis, Carnegie Mellon Univ., USA .

Towards Advanced Programming Environments Based on Algebraic Concepts
Manfred Broy, Alfons Geser, Heinrich Hussmann, Univ. Passau, FRG

Program Development by Transformation and Refinement

Stefan Jaehnichen, Fatima Ali Hussain, Matthias Weber, GMD Karlsruhe, FRG .

Discussion.

KNOWLEDGE-BASED AND FUTURE PROGRAMMING ENVIRONMENTS

Creating a Software Engineering Knowledge Base
Andrew J. Symonds, IBM, USA . :

The Unified Programming Environment: Unobtrusive Support
Terrence Miller, Hewlett Packard Labs, USA

Beyond Programming-in-the-Large:
The Next Challenges for Software Engineering
Mary Shaw, Carnegie Mellon Univ., USA .

*Reuse of Cliches in the Knowledge-Based Editor
Richard C. Waters, MIT AI-Lab, USA

*0rganizing Programming Knowledge into Syntax-Directed Experts
David S. Wile, ISI

t*Framework for a Knowledge-Based Programming Environment
. Wolfgang Polak, Kestrel Institute, USA

Discussion.
Summing Up.
Index of Discussion Participants.

List of Attendants.

SOURCE LEVEL DEBUGGERS:
EXPERIENCE FROM THE DESIGN AND IMPLEMENTATION OF CHILLSCOPE

Svein 0. Hallsteinsen

RUNIT
The Computing Center of the University of Trondheim
N-7034 Trondheim-NTH Norway

Abstract

This paper is based on experience from the design and implementation
of an interactive source level debugger as part of a programming
enviroment for CHILL. The debugger is based on a variant of the event
action breakpoint. By combining the ability to detect a rich
repertoire of events, including events concerned with the interaction
between concurrent processes, and a command 1language including the
source language, a very powerful tool has been obtained. The paper
describes the main features of the debugger and discusses some design

decisions.

1 INTRODUCTION

.1 ackground

CHILL is the programming language recommended by the CCITT for
programming SPC telephone exchanges. It is a Systems Implementation
Language (SIL) in the Algol tradition and includes features like user
defined types, modules a la Modula 2, programmable exception handling
and concurrent processing. CHILL was developed in roughly the same

period as Ada and is a language of the same sort.

A programming support environment for CHILL, called CHIPSY, is being
developed at RUNIT. CHIPSY 1is currently hosted on VAX and ND-100

minicomputers and produces target code for the INTEL-86 family of

microprocessors. It is intended for the development of professional
real time software. This paper is based on experience from the design
and implementation of CHILLscope, which is CHIPSY tool for testing
and debugging CHILL programs at the source level. Here testing means
executing the program with the intent to demonstrate the absence of
bugs, while debugging means finding the exact cause of a bug that has
been revealed during testing, and designing a correction that will
remove it. Both are «concerned with observation and analysis of
program execution. As this is exactly what debuggers supports, they
are useful both for testing and debugging. Testing and debugging are
also strongly interleaved, so in the sequel we shall use debugging

loosely to denote this mixed activity.

n ive De i Techni

The basic technique employed by most debuggers is user controlled
breakpoints. This technique consists of permitting the user to
specify points in the program where he wants execution to be
interrupted and control transferred to the debugger. Typically the
debugger will allow the user to inspect the state of the computation,
modify the state of the program, or even modify the program

(patching), before continuing execution.

Source level debuggers for high level languages employ basically the
same technique but supports access to the program being debugged in
source level terms. Ideally a source level debugger should releave

the programmer completely from having to know about the machine level

details, but the degree of source levelness varies from the abilify
to wuse symbolic names instead of machine addresser to full
transparency.

Since the technique was first introduced in the FLIT debugger

/Stoc60/, it has been considerably refined. A conditional breakpoint
has a condition attached and is only effective when the condition
evaluates to true. An event - action breakpoint has a sequence of
commands attached which will be executed when program execution hits

the breakpoint. Also,rather than placing the breakpoint at a point in

the program, it may be attaced to an event that may occur during
program execution. These may be simple events, e.g. assignment of a
particular 1location, or more complicated ones like the generalized

path expressions described in /Brue83/ or the behavioural

abstractions described in /BateB83/ which supports detection of

patterns of events expressed in a formalism resembling grammars.

Also the debugger should support viewing the program in terms of the
abstractions introduced by the programmer by means of the abstraction

mechanisms of the source language.

3 p i ; : 5o

The most interesting quantities for analysing program behaviour is
not always directly available as attributes of the objects of the
program, but have to be derived by complicated computations. Also
they may depend on observations at different points in time. E.Qs
complicated data structures may require extensive extraction and
formatting before a suitable view can be displayed. Likewise lots of
tedious inspection may be required before the interesting case
occurs. This calls for considerable expressive power in the debugger
command language. One approach is to include the source language in
the command language of the debugger. This has been done successfully
for languages like LISP, PASCAL and C and is also the approach taken
in CHILLscope.

2 CHILLSCOPE COMMAND LANGUAGE

2.1 Traps

CHILLscope 1is based on a variation of the event - action breakpoint
which we call a trap . The event specifications are of the form
operation performed on object; e.g. executing a particular action

statement, calling a given procedure or delaying a given process.

For specifying particular objects, the full object access
capabilities of CHILL is supported. Both for objects and operations
"any"” specifiers are available, such that events like “delaying any
process” or "any operation performed on a given process” may be

expressed.

The action part of the trap is a sequence of commands. The available

commands are a subset of CHILL plus the following:

DISPLAY: display given attributes of an object,
e.g. contents of a location, type of a procedure

BREAK: suspend execution of action part and
execute commands entered interarctively from
the user terminal

RUN: resume execution of suspended action
part or resume execution of program from a
given point

ENABLE/ enables/disables a given trap

DISABLE:
The CHILL subset includes assignment, procedure call, conditional
statement, concurrent processing and declaration of variables. The

delineation of the subset was mainly motivated by budget limitations
of the current implementation and may easily be extended. The
following examples show trap definitions that might be used for

debugging the sample CHILL program included in appendix.

TRAP tracePolling = la trap tracing state

WHEN linePoller:poll fchanges on the

Do !subscriber lines
DISPLAY lineTable(l);

oD;

TRAP checkLineTab = !a trap detecting

WHEN linePoller:poll linconsistencies in

IF lineTable(l).curState /= hookOn !the lineTable
AND lineTable{l).server = NULL
THEN
DISPLAY lineTable(l),1;
BREAK ;
FI;

We believe that the ability to call precompiled procedures, paired
with the ability for precompiled procedures to execute debugger
commands, is a very powerful concept that will stimulate the growth
of libraries of debug utilities, both general ones and application
specific ones. E.g. a procedure for displaying a linked 1list may look
as follows:
displayList:PROC(1list REF listElem);
DO WHILE 1ist /= NULL;
CHILLscope(' DISPLAY list->.value');
list := list->.next;

00;
END displaylList;

The expressive power of the event specifications is inherently good,

although it suffers in the current implementation because detection
of access to arbitrary variables is not supported. This is due to
lack of hardware support on the ND100 and we expect to be able to
remove this restriction when porting to the VAX.

In /Brue83/ and /BateB83/ the detection of patterns of events is
emphasized, but this is not explicitely supported in CHILLscope. This
may however be outweighed by the expressive power of the iction
language. This is illustrated in the example below where checking an
event pattern is implemented by combining traps detecting the
individual events and a set of precompiled procedures implementing
pattern recognition. The patterns are specified in a formalism

resembling EDL /Brue83/.

CALL defPat('call’,’'el ((e2'e4)/e3/e4) (e5?e6)’');
TRAP e0 = WHEN START aServer DO CALL startPat(’'call’,a); OD;

TRAP el WHEN START bServer IF inPat(a,’'e1’) NOT THEN BREAK; FI;

TRAP e2 = WHEN SEND accepted IF inPat(a, e2’) NOT THEN BREAK; FI;

TRAP @3 = WHEN SEND noAnswer IF inPat(a, 'e3’) NOT THEN BREAK; FI;

TRAP e4 = WHEN SEND quit IF inPat{a,'e4’) NOT THEN BREAK; FI;

TRAP e5 = WHEN STOP aServer 1IF inPat(a,'e5') NOT THEN BREAK; FI;

TRAP e6 = WHEN STOP bServer IF inPat(a, e6') NOT THEN BREAK; FI;

ntifier Bindin

Throughout a CHILL program, the same identifier may. be used in
different meanings. The visibility rules of CHILL ensures that at
any point in the program, the wvisible identifiers have a unique
meaning. The debugger wuses the current focus of execution as the

default context to bind identifiers.

However, the debugger must also support access to objects whose
identifier 1s not visible in the current context or is visible with
another meaning. To cater for this a notation for indicating the
context explicitely has been adopted. The context indication has a
static part and a dynamic part. The static part specifics the static
scope while the dynamic part selects the process instance and

procedure invocation.

E.g. if i is a location defined in a recursive procedure p defined in
a 'module m, and q denotes a process having Jjust called p, then
[qIm:p#2:i denotes the i in the 2nd recursive incarnation of p evoked

by q.

This notation makes it possible to specify non existing objects. If
that occurs during the evaluation of an action, the offending command
is ignored. Another possibility is that the event specification of a
trap refers to an object that does not exist. In that case our
approach 1is that an event does not occur while its specification

refers to non existing objects.

u N RENT PROGRAM

The CHILL language supports programming of concurrent processes and
the applications CHILL is intended for are highly concurrent systems.
Therefore the design of CHILLscope has emphasized support for

debugging such programs.

It 1is common to distinguish between the debugging of each process as
a sequential program, and debugging of the cooperation between the
processes. Supplied with the ability to detect relevant events, the
trap mechanism proved to be an adequate tool also for the inter-
process activities. These events are starting, stopping, delaying and
continuing processes and operations on synchronisation objects. The
DISPLAY command is capable of displaying the state of processes and

synchronisation objects.

In /Smit85/ a debugger designed solely for debugging inter process
activity 1is described. This debugger has a concept called a demon

which is very similar to the trap.

The role of the debugger in the system of concurrent processes
requires some comment. It is essential that it is well defined which
process executes the action part of a trap, and also who executes the
commands entered interactively after a break command. In our
approach, the effect is as if the action attaced to the trap was
inserted in the trapped process at the point were the event occurred.
The other processes may or may not continue execution depending on
the scheduling algoritm. In the current implementation they will not,
but the trapped process may cause another process to continue while
the first one 1is still trapped by executing a forced scheduling

action.

An alternative approach wused 1in several other debuggers is

implementing the debugger as a separate process. Our choise was

motivated by the following:

- In order to have full control over the inter process
communication and the state of the processes and the
synchronization objects 1in the debugger, it is necessary to be
able to execute syncronization actions appearing in the action
parts of the traps as if they were executed by given processes.
Another possibility would have been to provide special commands
for manipulating the data structures of the execution support
system, but this was discarded because it was felt to be ‘in

conflict with the source level orientation.

- Admittedly, it 1is also very useful to have special debugging
processes that observe the processes being debugged. For
example, this is a common technique to reduce the probe effect
when debugging in real time. However this may be programmed

explicitely in the command language.

4 PIECEWIS EBUGGING

Independent program modules is a valuable programming paradigm that
should be supported also at debug time. Finding bugs during early
testing of individual modules may prove conciderably more efficient
than finding the same bug in test runs involving the whole program.
The basic facility needed is some mechanism for simulating the absent

part of the program.

In CHIPSY the linker builds stubs representing the objects imported
by the module being tested from the absent part of the program. In
the stubs for procedures and processes the body has been replaced by
a breakpoint, such that their behaviour can be simulated by debugger
commands. Debugger commands are also used to stimulate the object

being debugged.

MPLEMENTATION ISSUES

There are essentially two ways to implement a debugger of the kind
described above, by interpretive execution testing for the events to
be trapped in the inner loop of the interpreter, or by executing the
compiled code with break instructions inserted to allow detection of
the events. The break instructions may be inserted permanently by the
compiler at regular intervals, e.g. between each statement, or
dynamically by the debugger as needed to detect the events introduced

in trap definitions.

In CHILLscope the latter appproach was chosen, mainly because of its
superior performance. It is typically one to two decades better than |

interpretive execution.

A drawback of this approach, is that 1t restricts the types of
events that are supported, because the events has to be detectable by
break instructions inserted at a limited set of locations. It may be
claimed that it is only a matter of 1inserting enough break
instructions, or resorting to single stepping, but then the

performance advantage is sacrificed.

How serious this drawback is depends on what hardware support is
available. E.g. in the current implementation of CHILLscope,
detecting access to arbitrary locations is not supported, while on
computers supporting guards on arbitrary storage areas, this would be
no problem. The repertoire of detectable events for concurrent
processing 1s fairly complete, because they can be detected by break

instructions inserted in the runtime support system.

Another drawback of this approach is difficulties with maintaining
the source level correspondence if the code has been optimized by the’
compiler. However, work has been published showing practical
solutions to these problems for a number of cgmmon optimizations
/Henn82/ /Zell83/. The problem has not vyet been addressed in the
CHILLscope project, because the current compiler does no optimization

that causes problems for the debugger.

The debugger works on the ordinary generated code. I.e. no additional
or special code is generated to support the debugger. Although

convenient, this is not - so important in the current implementation

were only debugging in the host environment is supported. However,
CHILLscope was designed to be adaptable for debugging in the target
environment also, and there it is important that the operational code
is identical to the code that has been debugged. One may even want to

debug code in operation.

In real time systems, the probe effect is a problem. That is, the
precence of the debugger disturbs the execution in such a way as to
mask bugs /Gait84/. To minimize the disturbance we envisage an
implementation of the debugger, where the program being debugged and
the machine near parts of the debugger runs in the target computer,
while the rest of the debugger runs in the host environment. This
will have the intended effect only if detecting events and executing
the associated actions is possible without communicating with the
host computer. This is achieved by translating the traps at
definition time to an 1intermediate form where all relevant
information is available, which is stored in the target computer. The
‘break and display commands will still necessitate communication with
the host computer, so these should be avoided in the time «critical
processes. The DICE system /Frit83/ employs a similar approach, but
there the traps are compiled into machine code and inserted into the
program by an incremental compiler. This gives more efficient

execution of the trap action and thus less disturbance.

& FUTURE WORK

CHILLscope has Jjust been released to CHIPSY users, so the only

experience with using 1t is from acceptance testing.

From this limited experience we can conclude that a windowed user
interface 1is badly needed. To debug a program with concurrent

processes with only a single stream oriented user interface is hard.

More flexible access to program data is another important area for
improvement. Program information i1s now mainly accessed by name. In
many situations, however, there is a need to pose queries more in the

form of database gueries.

Such access 1s supported in a limited form for dynamic process data.
E.g. "DISPLAY ALL ACTIVE aServer INSTANCES SIGNAL' means display the

signal queue of all active instances of the process definition

