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Preface

This text is intended for use in a first course in discrete mathematics in
an undergraduate computer science and mathematics curriculum. The
level is appropriate for a sophomore or junior course, and the number of
topics and the depth of analysis can be adjusted to fit a one-term or a
two-term course. A computer science student can take this course
concurrently with the first course in programming preliminary to the
study of data structures and the design and analysis of algorithms. A
mathematics student may take this course concurrently with the first
calculus course.

No specific background is prerequisite outside of the material ordi-
narily covered in most college algebra courses. In particular, a calculus
background is not required for Chapters 1 to 7. While it is not necessary,
knowledge of limits would help in understanding the proof of one
theorem in Chapter 7 and knowledge of integration would enhance
understanding some of the discussions in Chapter 8. We have assumed
that students will have had little or no programming experience,
although it would be desirable.

Our assumption about background has dictated how we have written
the text in certain places. For instance, in Chapter 3, we have avoided
reference to the convergence of power series by representing the geomet-
ric series

iaiX‘

as the multiplicative inverse of 1 — aX; in other words, we have
considered power series from a strictly algebraic rather than the analyti-
cal viewpoint. Likewise, in Chapter 4, we avoid reference to limits when
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we discuss the asymptotic behavior of functions and the “big O
notation,” but if students understand limits, then exercises 11 and 12 in
Section 4.2.1 will greatly streamline the discussion..

The Association for Computing Machinery, CUPM, and others have
recommended that a computer science curriculum include a discrete
mathematics course that introduces the student to logical and algebraic
structures and to combinatorial mathematics including enumeration
methods and graph theory. This text is an attempt to satisfy that
recornmendation.

Furthermore, we expect that some of the teachers of this course will be
mathematicians who are not computer scientists by profession or by
training. Therefore, we have purposely suppressed writing many algo-
rithms in computer programming language, although on occasions it
would have been easier to do so.

We believe that a discrete mathematics course based on our book will
meet several important needs of both computer science and mathematics
majors. While the basic content of the book is mathematics, many
applications are oriented toward computer science. Moreover, we have
attempted to include examples from computer science that can be
discussed without making presumptions about the reader’s background
in computer science. e

Many apparently mathematical topics are quite useful for computer
science students as well. In particular, computer science students need to
understand graph theory, since many topics of graph theory will be
applied in a data structures course. Moreover, they need mathematical
induction as a proof technique and to understand recursion, Boolean
algebra to prepare for digital circuit design, logic and other proof
techniques to be able to prove correctness of algorithms, and recurrence
relations to analyze algorithms. Besides that, computer science students
need to see how some real life problems can be modeled with graphs (like
minimal spanning trees in Section 5.4, scheduling problems and graph
coloring in Section 5.11, and network flow problems in Chapter 7).

Mathematics majors, on the other hand, will use graphs as a modeling
tool, and they will benefit from a study of recurrence relations to
understand computer solutions of differential equations. But more than
that, discrete mathematics provides a good training ground for the
mathematics student to learn to solve problems and to make correct
proofs. For this reason, mathematics majors should take discrete mathe-
matics quite early in their program of studies, preferably before those
courses that require many proofs.

Discrete mathematics embodies the spirit of mathematical and scien-
tific research perhaps more than almost any other undergraduate mathe-
matics course. In graph theory, for example, powerful concepts can be
defined and grasped because they can be visualized and simple examples

-
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can be constructed easily. This feature and others make the subject both
challenging and rewarding to student and teacher alike.

The text has evolved over a period of years and, in that time, our
curriculum at Florida State University has changed significantly, espe-
cially for computer science students. Thus, not only has the list of topics
changed, but also the order in which we discuss them. Consequently, we
have written the text so that the chapters are more or less independent of
each other.

The following diagram shows the basic logical relationship among the
chapters.

Chapter 3

/ Chapter 2 ?: Chapter 6

Chapter 1 |—| Chapter 4 — Chapter 8
\ Chapter 5 % Chapter 7

™| Chapter 8

Chapter 1, of course, is introductory and as much or as little of it can be
discussed as needed depending on the background of the students. Most
students likely have been exposed to the material of Sections 1.1, 1.2, and
1.3 except possibly the definitions in Section 1.3 of equivalence relations,
composition of relations, and one-to-one and onto functions.

We recommend covering, at the minimum, Section 1.7 (Methods of
Proof of an Implication) and Section 1.10 (Induction). Sections 1.5 and
1.6 contain introductory material on logic and is the foundation upon
which Section 1.7 is built. A thorough understanding of proof by
induction is, in our opinion, absolutely essential.

Section 1.4 is a general discussion that can be assigned for reading.
Section 1.9 (Rules of Inference for Quantified Propositions) may be
omitted without injury.

Chapter 3 can be taught at any time after Chapter 2 is covered. In
particular, in a curriculum that calls for an early introduction to trees and
graph theory we recommend that Chapter 3 be postponed until after
Chapter 5. Only elementary recurrences are used in Section 5.5, and in
Section 5.6 there is only one use of a recurrence relation. But even this
does not require any result from Chapter 3, as a solution can be obtained
instead from Example 1.10.11 in Chapter 1.

Chapter 4 on directed graphs and Chapter 5 on nondirected graphs are
related but may be treated as mutually independent chapters since
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definitions given in Chapter 4 for digraphs are repeated and illustrated
for Chapter 5. In fact, Sections 4.1 and 4.2 ean be taught concurrently
with Sections 5.1 and 5.2.

We have made several significant changes from the first edition. First
we have added two chapters, Chapter 7 on network flows and Chapter 8
on representation and manipulation of imprecision. Next, we have added
several exercises in almost every section of the book. Moreover, we have
consolidated two separate sections on partial orders into one in this
second edition (Section 4.4), and we have removed the material on fuzzy
sets from Chapter ! of the first edition and incorporated that with other
material on expert systems inta Chapter 8. We have rewritten other
sections including the section on methods of proof in Chapter 1, Section
3.6 on solutions of inhemogeneous recurrence relations in Chapter 3, and
Sections 5.1 through 5.6 of Chapter 5 on graphs. The most notable change
in Chapter 5 is that we have consolidated spanning trees and minimal
spanning trees into one section and we have introduced breadth-first
search and depth-first search spanning trees as well.

Finally, we have added chapter reviews at the end of each chapter.
Chapter 5 has a review for Sections 5.1 to 5.6 and then one for Sections
5.7 to 5 12. These reviews contain questions and problems from actusl
classroom tests that we bave given in our own classes.

There are several possible course syllabi. For mathematics students
only, we suggest Chapters 1, 2, 3, 5, and 7. One for computer science
majors alone could be Chapters 1, 2, 4, 5 (at least Sections 5.1 to 5.6), 7,
and 8 Chapter 6 on Boolear: algebras could replace Chapter 7 or 8 if
preparation for a digital design course is needed.

At Florida State Universitv our discrete classes contain both mathe-
matics majors and computer scierice majors so we follow this syllabus:

Discrete I:
Sections 1.5 to 1.10 of Chapter 1 (Section 1.9 is optional), Chapter 2,
and Chapter 5 (at least Sections 5.1 to 5.6)

Discrete II: ar g
Chapters 3, 4, 7, and selected topics from sections 5.7 to 5.12 as time
permits.

Exercises follow each section, and as a general rule the level of
difficulty ranges from the routine to the moderately difficult, although
some proofs may present a challenge. In the early chapters we include
many worked-out examples and solutiouns to the exercises hoping to
enable the student to check his work and gain confidence. Later in the
book we make greater demands on the student; in particular, we expect.
the student to be able to make some proofs by the end of the text.
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A Note to the Reader

In each chapter of this book, sections are numbered by chapter and
then section. Thus, section number 4.2 means that it is the second section
of Chapter 4. Likewise theorems, corollaries, definitions, and examples
are numbered by chapter, section, and sequence so that example 4.2.7
means that the example is the seventh example in section 4.2.

The end of every theorem proof is indicated by the symbol [J.

We acknowledge our intellectual debt to several authors. We have
included at the end of the book a bibliography which references many,
but not all, of the books that have been a great help to us. A bracket, for
instance [25], means that we are referring to the article or book number
25 in the bibliography.

An asterisk (*) indicates that the problem beside which the asterisk
appears is generally more difficult than the other problems of the
section.

Joe L. Mott
Abraham Kandel
Theodore P. Baker
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Foundations

1.1 BASICS

One of the important tools in modern mathematics is the theory of
sets. The notation, terminology, and concepts of set theory are helpful in
studying any branch of mathematics. Every branch of mathematics can
be considered as a study of sets of objects of one kind or another. For
example, algebra is concerned with sets of numbers and operations on
those sets whereas analysis deals mainly with sets of functions. The study
of sets and their use in the foundations of mathematics was begun in the
latter part of the nineteenth century by Georg Cantor (1845-1918). Since
then, set theory has unified many seemingly disconnected ideas. It has
helped to reduce many mathematical concepts to their logical founda-
tions in an elegant and systematic way and helped to clarify the
relationship between mathematics and philosophy.

What do the following have in common?

a crowd of people,

a herd of animals,

a bunch of flowers, and
a group of children.

In each case we are dealing with a collection of objects of a certain type.
Rather than use a different word for each type of collection, it is
convenient to denote them all by the one word “set.” Thus a set is a
collection of well-defined objects, called the elements of the set. The
elements (or members) of the set are said to belong to (or be contained
in) the set.
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It is important to realize that a set may itself be an element of some
other set. For example, a line is a set of points; the set of all lines in the
plane is a set of sets of points. In fact a set can be a set of sets of sets and
so on. The theory dealing with the (abstract) sets defined in the above
manner is called (abstract or conventional) set theory, in contrast
to fuzzy set theory which will be introduced later in Chapter 8.

This chapter begins with a review of set theory which includes the
‘introduction of several important classes of sets and their properties.

In this chapter we also introduce the basic concepts of relations and
functions necessary for understanding the remainder of the material.
The chapter also describes different methods of proof—including mathe-
matical induction—and shows how to use these techniques in proving
results related to the content of the text.

The material in Chapters 2-8 represents the applications of the
concepts introduced in this chapter. Understanding these concepts and
their potential applications is good preparation for most computer
science and mathematics majors.

1.2 SETS. AND OPERATIONS OF SETS

. Sets will be denoted by capital letters A,B,C, .. .,X,Y,Z. Elements will
be denoted by lower case letters a,b,c,. . .,x,y,2. The phrase “is an element
of” will be denoted by the symbol €. Thus we write x € A for “x is an
element of A.” In analogous situations, we write x & A for “x is not an
‘element of A.”
There are five ways used to describe a set.

1. Describe a set by describing the properties of the members of the
set. :
2. Describe a set by listing its elements.
3. Describe a set A by its characteristic function, defined as

palx) =1ifx €A,
us(x) =0ifx & A,

for all x in U, where U is the universal set, sometimes called the “universe
of discourse,” or just the “universe,” which is a fixed specified set
describing the context for the duration of the discussion.

If the dizcussion refers to dogs only, for example, then the universe of
discourse is the class of dogs. In elementary algebra or number theory,
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the universe of discourse could be numbers (rational, real, complex, etc.).
The universe of discourse must be explicitly stated, because the truth
value of a statement depends upon it, as we shall see later. .

4. Describe a set by a recursive formula. This is to give one or more
elements of the set and a rule by which the rest of the elements of the set
may be generated. We return to this idea in Section 1.10 and in Chapter
3.

5. Describe a set by an operation (such as union, intersection, comple-
ment, etc.) on some other sets.

Example 1.2.1. Describe the set containing all the nonnegative
integers less than or equal to 5.

Let A denote the set. Then the set A can be described in the following
ways:

1. A = {x]x is a nonnegative integer less than or equal to 5.
2. A =1{0,1,2,3,4,5}.

1 forx =0,1,.5 355

0 otherwise.

W

-'“A(x) -

4. A={x;,, =x +1,i=0,1,..,4, where x, = 0}.

5. This part is ieft to the reader as an exercise to be completed once the
operations on sets are discussed.

The use of braces and | (“such that”) is a conventional notation which
reads: {x | property of x| means “the set of all elements x such that x has
the given property.” Note that, for a given set, not all the five ways of
describing it are always possible. For example, the set of real numbers
between 0 and 1 cannot he described by either listing all its elements or
by a recursive formula.

Ir this section, we shall introduce the fundamental operations on sets
and the relations among these operations. We begin with the following
definitions. 4

Definition 1.2.1. Let A and B be two sets. Then A is said to be a
subset of B if every element of A is an element of B; A is said to be a
proper subset of B if A is a subset of B and there is at least one element of
B which is not in A.

f A is a subset of B, we say A is contained in B. Symbolically, we write
A C B.If A is a proper subset of B, then we say A is strictly contained in
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B, denoted by A C B. The containment of sets has the following
properties. Let A, B, and C be sets. e

LA CA

o' HAC a1 C, théenA & C:

3. fACBand BC C,then A C C.

4. IFACB and A ¢ C, then B  C, where /. means “is not contained

T

The statement A C B does not rule out the possibility that B _ A. In
fact, we have both A C Band B C A if and only if {abbreviated iff) A and
B have the same elements. Thus we define the following:

Definition 1.2.2. Two sets A and B are equal iff A C Band B CA.

We write A = B.
Therefore, we have the following principle.

Principle. To show that two sets A and B are equal, we must show
that each element of A is also an element of B, and conversely.

A set containing no elements is called the empty set or null set,
denoted by @. For example, given the universal set U of all positive
numbers, the set of all positive numbers x in U satisfying the equation
x +1 = 0 is an empty set since there are no positive numbers which can
satisfy this equation. The empty set is a subset of every set. In other
words, & (C A for every A. This is because there are no elements in @;
therefore, every element in @ belongs to A. It is important to note that
the sets @ and {@| are very different sets. The former has no elements,
whereas the latter has the unique element @. A set containing a single
element is called a singleton. -

We shall now describe three operations on sets; namely, complement,
union, and intersection. These operations allow us to construct new sets
from given sets. We shall also study the relationships among these
operations.

Definition 1.2.3. Let U be the universal set and let A be any subset
of U. The absolute complement of A, A, is defined as {x |x & A} or,
{x]x € Uand x ¢ Al. If A and B are sets, the relative complement of
A w1th respect to B is as shown below.

B-A={x|x €EBandx & A}

It is clear that @ = U, U - @, and that the complement of the
complement of A is equal to A.

Definition 1.2.4. Let A and B be two sets. The union of A and B is
AUB<ix[x&E AorzE Bor both}. More generally, if A;,4,,.. ,A, are

Bl
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sets, then their union is the set Qf all objects which belong to at least one
of them, and is denoted by

AiUA,U...UA,orby | A,

=1

Definition 1.2.5. The intersection of two sets A and B is
A N B ={x|x € A and x € B}. The intersection of n sets A,,4,,. . ., 4, is
the set of all objects which belong to every one of them, and is denoted
by

A NAN...-NA,or (A

Jj=1

Some basic properties of union and intersection of two sets are as
follows: ;

Union Intersection
idempotent: AUA=A ANA=A
Commutative: AUB=BUA ANB=BNA

Associative: AU (BUC)=(AUBUC AN(BNC)=(ANB)NC

It should be noted that, in general,
(AUB)NC#AU (BMNDC).

Definition 1.2.6. The symmetrical difference of two sets A and
Bis A A B = {x|x € A, or x € B, but not both}. The symmetrical
difference of two sets is also called the Boolean sum of the two sets.

Definition 1.2.7. Two sets A and B are said to be disjoint if they
do not have a member in common, that is tosay,if A N\ B = @.

We can easily show the following theorems from the definitions of
union, intersection, and complement. '

Theorem 1.2.1. (Distributive Laws). Let A, B, and C be three sets.
Then,

CNAUB)=(CNA)U (CN B),
CU(ANB)=(CUA)N(CU B).



