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PREFACE

The choice of topics considered here ane dictated by the author's
own interest in  the §ield and concentrnated heavily on his own research
work done in the Last yearns. No claim fon completeness 48 made gor the
bibliography at the end of +the notes. Numberns An square brackets nefer
Lo £%.

The notes are aimed 1o persons who atready have an acquaintance
with the general theory of Locally convex spaces. Since the proofs are
presented with detail and since some effonts have been made to glve a
number of sdmple arguments replacing some  rather cumbersome consthuc -
tions, most of the notes should be readable forn graduate students but
they can also serve as a heference for the more advanced mathematician.

These notes consist of Zhree Chapterns. Each chaptern splits into
sevenal paragraphs and each paragraph An  sections which are enumerated
in  consecuteve fashion. Gross references are usually u. V. W. Z
meaning Zthat nefenence 45 made fo statement z of section W An para-
ghaph v 4n chapten u. Gross references within the chapter are v. W. z
and within the paraghaph W. z.

Nine paragraphs constitue the §4inst chapten. Paragraphs 1, 2, 3, 5
are dedicated to the study of classes of Locally convex spaces which
are used as domain class fon the closed ghraph theorem. Paragraph &4 s
devoted 2o the closed graph Zheorem when the range class 45 the
quasd - Suslin, K - Suslin, Suslin orn semi - Suslin spaces. Paragraph 6
studies the incidence of the duality ztheory on the closed graph theorem.
A characterization of the Locally convex spaces which are weakly realcom
pact 45 Ancluded as well as a discussion on generalized countable in-
ductive Limits. Some propernties on bounded sets in (LN) - spaces are
gdven.

vii



viii PREFACE

The second chapter is concerned with sequence spaces which are
studied along s4ix paragraphs. A general study of the Kothe penfect
spaces and echelon and co - echelon spaces is included. A characteriza-
tion of echelon quasi - nonmable spaces 45 given as well as a discussion
on echelon and co - echefon spaces of order p, 1 <p < w, and of on-
der zero. Paraghaph 5 contains examples of sequences spaces which answen
several questions on aspects of zhe general zheory of Locally convex
dpaces. An example of a Banach space which 44 an hyperplane of its
stnong bddual due 2o R. C. JAMES 4nspines the end of the chaptern whene
a construction of some vector - valued sequence Apaces can be found.

Chapter three has three paragraphs: the §inst includes easy nephe-
sentations of the more Anteresting spaces of Lnfinitely differentiable
functions and distributions. 1In the second paragraph representations of
spaces of CM - differentiable functions can be found. The Last paraghah
A8 a detailed exposition of Mlutin' s nepresentation theonem: L6 X and
Y are non - countable compact metric spaces, them the Banach spaces C(X)
and C(Y) are isomonphic.

T wish to acknowledge the help 1 have neceived gxom colleagues who
have nead parts of the manuscript: P. Pérez Carreras, J. Bonet, M. Lbpez
Pellicer, M. Maestre and R. Crespo. 1 thank also my wife fon her help in
Ztyping the manusenipt,

Manuel Valdivia
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CHAPTER ONE
SOME CLASSES OF LOCALLY CONVEX SPACES

Centain classes of Locally convex spaces are studled: Batihe, convex-
Baine, ondered convex-Baine, suprabarrelled, realcompact, e o= and (LB)
spaces. Two paraghaph are dedicated to the closed ghaph and open mapping
Ztheorems.

§ 1. BAIRE SPACES

1. TOPOLOGICAL SPACES OF SECOND CATEGORY. The topological spaces we shall
use in this paragraph are supposed distinc from the void set. Let B be a
subset of a topological space X. B is nowhere dense or rare if and only its
closure has void interior. It is obvious that, if B is rare, every subset
of B is also rare. B is of first category or meager if and only if it is the
countable union of rare sets of X. Clearly, if B is of first category, eve-
ry subset of B is also of first category. B is of second category if and on
ly if it is not of first category. If B is of second category every subset
of X containing B is of second category. If the subset X of X is of second
category we say that X is a space of second category. If every non-void open
subset of X is of second category, X is said to be a Baire space. It is im
mediate that if X is a Baire space, it is a space of second category.

In what follows R denotes the field of the real numbers. If we set

A= {(x,0) : x ER} ,

B = {(0,y) : y rational number, y # 0}

and if Y = A U B is endowed with the topology induced by the euclidian
space R2, it is easy to show that Y is a space of second category which is
not Baire, since B is an open subset of Y which is countable union of rare



2 SOME CLASSES OF LOCALLY CONVEX SPACES

subsets which have only one element.
Given a subset M of a topological space X we set M to denote the

closure of M and M for its interior. A open set M is regular and if only

if M =M

(1) A topologicak space i8 Baire if and only if given any sequence (Ap)

of dense open subsets of X, then 0{ Am: m=1,2, ...} 48 demse in X
Proof. Suppose that X is a Baire space. Let A be a non-void open set

of X. For every positive integer m, X An is a closed subset of X

without interior point and therefore (X ~ Am)rﬁA is rare. Since A is of
second category we have that

A U{(X~vAp )NA:m=1,2, ...}

and therefore there is a point X in A. which is not in X~ A , m = 1,2,..,
thus x belongs to Am{WA, m= 1,2, ..., and therefore ﬂ{Am tm= 1,24..0}
is dense in X.

Reciprocally, Tet A be a non-void open set of X. Let (M_) be a

-
sequence of rare subsets of X contained in A. For every positive integer m,
we set Am for X ~ ﬁh. Then (Am) is a sequence of dense open sets of X

and therefore ﬂ{Am tm=1,2, ...} is dense in X. Then

ANn{ Am tm=1,2, ...} # 80
and thus A is not contained in

Uu{ Mm S = 1,25 wvds

Consequently, A is of second category. The proof is complete.

Result (1) can be stated as

(2)  The topokogical space X 4is Baire Af and onky 4if, given any sequence
(Am) of dende open subset of X and given a non-void open subset A of X

AD( N {Am imE 1,25 0.3 )
L5 non-vodd.
(3) Let B be a subset 0f a topological space X. Let A = {Ai 16 1} the
gamily of all open sets of X such that A; VB 8 of finst category, i 6 1

Then A=U{Ai:i6I} s an open negular subset 0f Xwhich intensects B 4in a set
04 finst categony.
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Proof. Let
(4) Py 3 el

be the collection of all subfamilies of A such that if j belongs to J and P
and Q are different elements of P., then P and Q are disjoint.

We order the collection (4) by inclusion. We apply Zorn's lemma to ob
tain a maximal element P= {Mh : h €H} in (4). Set M =U{Mh : h 6H}. For
every h in H there is a sequence (ME) of rare subsets of X such that

N g = N
Mh B U {Mh tm 1425050t

For every positive integer n, we set

MU= UMP b6 HY, mo= L2,

Suppose that the interior P of M" is non-void. Then PN M" is non-void and
therefore there is k in H such that P 0 ME is non-void. Since the elements
of P are pairwise disjoint and since Mk is open we have that the closure Q
of

n

1] {Mh :h €H, h# k}
is disjoint from Mk' Therefore
N YT nM o=Mn o
PO M M OM (M UQ) Mo =M 0 M S M

and that is a contradiction. Thus M" is a rare subset of X and since

M“B=U{MhﬂB:h€H)=U[ME:hGH,n=1,2,..}

=u M :n=1,2,...}

it follows that MM B is of first category. Since M v M is rare, it follows
that U~ M is rare, U being the interior of M and from

UNB=((UrM)N B)U (MN B)

we obtain that UN B is of first category. We shall see now that U coinci-
des with A. Let L be an element of A. If L is not contained in Us then Lv M
is a non-void open set which is disjoint from each of the elements of P and
intersects B in a set of first category, contradicting the maximality of
P. Now the conclusion follows.
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Using the same notations as in (3), we denote by D(B) the set of all
points x of X such that every neighbourhood of x meets B in a set of second
category. Then D(B) coincides with X ~ A. We set O(B) to denote the inte-
rior of D(B). We conclude from (3) the so called Banach's condesation theo-
rem:

(5) The set (X~ D(B)) M B is 04 §inst category and D(B) coincides with

(6) For every subset B of a topologleal space X, B~ O(B) 4is of §ins% ca-
tegony.

Proof. Let A be the open set defined in (3). Then AN B is of first
category and D(B) ~ O(B) is a rare set. Consequently,

BN (AU(D(B) ~ 0(B)))
is of first category. Finally
B~ 0(B) =BN (X~ 0(B)) =B AN (AU(D(B) ~ 0(B)))

and the conclusion follows.

(7) Let (Bm) be a sequence of subsets of a topological space X whose union

L5 B. Then
(8) D(B) ~ U {O(Bm) I
A5 hare.

Proof. Suppose that the closed set (8) has non-void interior S.
Then SN B is of second category and therefdre there is a positive integer
p such that SN Bp is of second category. Consequently $ N D(Bp) is non-
void and therefore SN O(Bp) is non-void and that is a contradiction.

A subset B 1in a topological space X has the Baire property if there
exists an open set U such that U~ B and B ~ U are of first category.

(9) A subset B in a topological space X.has the Baire property if and on-
Ly 4§ O(B) ~ B 48 of first categony.

Proof. According to (6), B ~ 0(B) is of first category. Therefore if
0(B) v B is of first category B has the Baire property.

Now suppose that B has the Baire property. Let U be an open subset
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of X such that U~ B and B ~ U are of first category. Then X ~ U meets B in
the set of first category B n U. Therefore D(B) is contained in U. Since
U~ U is rare we have that U~ B is of first category. On the other hand,

0(B) vB< D(B) vBc U~ B

and therefore 0(B) ~ B is of first category. The proof is complete.

2. PRODUCTS OF BAIRE SPACES. In what follows N denotes the set of the posi
tive integers. Let d be a metric on a topological space X. We say that d is
compatible with the topology of X if this topology coincides with the to-
pology of the metric space (X,d).

Let {Xi : i 6 I} be a family of topological spaces. For every i of I
let di a metric on Xi compatible with the topology of Xi such that (Xi'di)

is a complete metric space. Then we have the following result due to BOUR-
BAKI :

(1) The topological product X = H{Xi : 1 €I} 48 a Bailre space.
Proof. Let A be a non-void open set of X. Let (Am) be a séquence of

dense open sets of X. Since AN Al is non-void there is a finite subset I1
of I and a closed ball A} in (Xi’di)’ of radius Tless than %—, i 6 Il, such

that

. . 3 N
Il {Ai i€ Il} x H{Xi H B GV Il} c A Al

Proceeding by recurrence suppose that, for a positive integer n, we have

selected a finite subset In of I and a closed ball A? in (Xi’di) of posi-

tive radius less than lﬁ-, i€ In. Since

S .
Mn = H{Ai : 16 In} XH{Xi B GV In}

has non-void interior we can find a finite subset In+1 in I, InC; In+1’ and

n+l .

a closed ball Ai in (Xi’di) of positive radius less than

1 .
el 1€ T
such that
n+l

II {A1

IR WS (I N KV

is contained in the interior of Mnf1 R i1 Weset J = ! {In th = 1,240.0F.

1
For every i in I ~ J take a point xj in X1 and set x1.n = Xjs N = Ligi@is s
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If i belongs to J and n to N we take x? in A?. The sequence (xin) is ob-

viously a Cauchy sequence in (Xi’di) and therefore converges in this space
to a point X; belonging to

ﬂ{A? :n o= 1,2,

n

Consequently the sequence ((x;,  : i € I)) of X converges in this space to

i

(x; : 1 €1) and

i

(x.

;2161)60 M o= 1,2,...} c AN (N (A, sm = 1,2,..3)

and the conclusion follows.

If we suppose that the former index set I has only one element we ob
tain from (1) the classical theorem of Baire:

(2) 1f there is a metric d 4in a topolLogical space X compatible with its
topology and such that (X,d) is complete, then X is a Baire Apace.

Now suppose that Yi is a topological space, i € I. Denote by Y the
topological product H{Yi : 1 € 1I}. Acylinder in Y is a subset of Y of the
form

il {Ai i 6 I}
where A1 = Yi save a finite number of indices 1.

(3) 1§ the cardinal of 1 is Less on equal than the cardinal o4 R and if Ys
45 separable, i C I, then s separable.

Proof. For every i in I let (xim) be a sequence in Yi whose elements
form a dense subspace Zi of Yi' The topological space

Z = n{21 161}

is dense in Y and therefore it is enough to show that Z is separable. Now
suppose that N has the discrete topology. The mapping T from the topologi-
cal space NI onto Z such that

T(ni ti€elI) = (X1n1 :iel)

is obviously continuous and therefore it is enough to show that NI is se-
parable. Let J be a non-void set, JN I = @, such that I U J has the cardi-
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nality of R. Then NI x NJ is homeomorphic to NR On the other hand, the pro

I x NJ onto NI is continuous and therefore it is enough to

jection of N
show that NR is separable.

Let P be the set of all the functions defined on R which are characte
ristic functions on intervals of rational ends. If k is the element of NR

which takes the value one in every point of R we set
P
= + .-1) f. :n,, p6N, f, 6P, j=1,2,...,p}.
H= {k J_El(nJ 1) fyong,p j J 25...5p}

H is a countable subset ofNR and we shall show that it is dense in NR. Let

U be a neighborhood of an element f of NR. We find pairwise distinct real

2,...,xq such that

R

numbers Xl’ X

{g 6 N" : g(xj) = filxeds J = 1s24.00sql & U,

J

Take pairwise disjoint intervals Al’ AZ"‘

xj is 1in Aj and set hj to denote the characteristic function of Aj,j=1,2,

.,Aq of rational ends such that

...q. Then

k +

M=)

(f(x.)-l)hj EHN U

j=1 2

and the conclusion follows.
(4) Let
(5) {AJ. 1 j 6 J}

be a family of palmwise disjoint non-vodld open sets of Y. 1§ for every i 4n

I, Y, 48 separable then J 4is a countable set.

Proof. Suppose the property is not true. Take a subfamily of (5),
which we denote by (5) again, such that the cardinality of J is less or
equal than the cardinality of R, and J is not countable.

For every j in J we find a finite subset Ij in T and a non-void open
subset Bi of Yi’ i€ Ij’ such that

H{B,i i€ Ij}x n {Yi i eI Ij}CL Aj

IfwesetL=1U {Ij 1§ 6 J} we have that the cardinality of L is less or

equal than the cardinality of R. We write



