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INTRODUCTION

1. Scope

Differential algebraic groups are defined roughly speaking as "groups of solutions of
algebraic differential equations" in the same way in which algebraic groups are defined as
"groups of solutions of algebraic equations". They were introduced in modern literature by
Cassidy [Ci] and Kolchin [Kz]; their pre-history goes back however to classical work of S. Lie,
E. Cartan and J.F. Ritt.

Let's contemplate a few examples before giving the formal definition (for which we send

to Section 3 of this Introduction). Start with any linear differential equation:
(1) Y(n)+aly(n-l)+...+any=0

where the unknown y and the coefficients 3, are, say, meromorphic functions of the complex
variable t. The difference of any two solutions of (1) is again a solution of (1); so the solutions
of (1) form a group with respect to addition. This provides a first example of "differential
algebraic group".

Similarily, consider the system

xy-1=0
@ 5
yy" - (y)" +ayy'=0

where the unknowns x,y and the coefficient a are once again meromorphic in t. This system
(extracted from a paper of Cassidy [Cu]) has the property that the quotient (x l/x2’ y l/yz) of
any two solutions (xl,yl), (xz,yz) is again a solution; so the solutions of (2) form a group with
respect to the multiplicative group of the hyperbola xy - 1 =0 and we are led to another
example of "differential algebraic group".

Examples of a more subtle nature are provided by the systems

yz-x(x- IXx-¢c)=0
(3a) {

x"y -xy'+ax'y=0

yz-x(x- Dix-t)=0
(3b) { 3 2 2
—y” = 2(2t - IXx - ) x'y + 2t(t - 1)(x - t)°(x"y - 2x'y) =0

where the unknowns x, y are still meromorphic functions in t, the coefficient a is meromorphic
in t and c # 0,1 is a constant in €. These systems (of which (3b) is extracted from a paper of
Manin [Ma]) have the property that if (x,y l) and (xz,yz) are distinct solutions of one of the
systems, then their difference, in the group law of the elliptic curve A defined by the first
equation of that system, is again a solution; so the solutions of (3a), (3b) together with the point
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at infinity (0 : 1 :0) of A form groups with respect to the group law of A and lead to other
examples of "differential algebraic groups".

A differential algebraic group will be called of finite dimension if roughly speaking its
elements "depend on finitely many integration constants" rather than on "arbitrary functions".
This is the case with the "differential algebraic groups" derived from (1), (2), (3); on the
contrary, for instance, the group, say, of all matrices

x 0 y
o 1 =z |, x#0
0 0

has its elements depending on the "arbitrary function" y so it is an "infinite dimensional
differential algebraic group". Differential algebraic groups are known today but to a few
mathematicians; and this is because Kolchin's language [K lIK 2] through which they are studied
is known but to a few mathematicians. Yet differential algebraic groups certainly deserve a
much broader audience, especially among algebraic geometers. The scope of the present
research monograph is twofold namely: 1) to provide an algebraic geometer's introduction to
differential algebraic groups of finite dimension and 2) to develop a structure and classification
theory for these groups. Unless otherwise stated, all results appearing in this book are due to
the author and were never published before.

2. Motivation

The original motivation for the study of differential algebraic groups in [Ci] and [K2] was
undoubtedly their intrinsic beauty and variety. Admittedly no such group appeared so far to play
a role, say, in mathematical physics; but as we hope to demonstrate in the present work,
differential algebraic groups play a role in algebraic geometry. This is already suggested for
instance by the implicit occurence of the differential algebraic group (3b) in Manin's paper [Ma]
on the geometric Mordell conjecture. Moreover as shown in the author's papers [BG]’ [B7]
differential algebraic groups may be used along a line quite different from Manin's to prove the
geometric and infinitesimal analogues of a diophantine conjecture of S. Lang (about inter-
sections of subvarieties of abelian varieties with finite rank subgroups). The latter application
will be presented without proof in an appendix. Other applications and interesting links with
other topics of algebraic geometry (such as deformations of algebraic groups and their
automorphisms, moduli spaces of abelian varieties, the Grothendieck-Mazur-Messing crystalline
theory of universal extensions of abelian varieties [MM], a.s.0.) will appear in the body of the

text (and will also be touched in this Introduction).
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3. Formalization

Before explaining our strategy and results in some detail it will be convenient to provide
the formal definition of differential algebraic groups with which we will operate in this book.

The frame in which this definition will be given is that of "differential algebraic
geometry" by which we mean here the analogue (due to Ritt and Kolchin) of algebraic geometry
in which algebraic equations are replaced by algebraic differential equations. Let's quickly
review the basic concepts of this geometry, cf. [R], [K l], [Cl]; for details we send to the first
section of Chapter 5 of this book.

One starts with a field of characteristic zero 2 equiped with a derivation § : Y+ U (i.e.
with an additive map satisfying §(xy) = (§x)y + x(§y) for all x,y ¢ ) and set J={x ¢U; & x = 0}
the field of constants. We assume that U is "sufficiently big" as to "contain" all "solutions of
algebraic differential equations with coefficients in it"; for the reader familiar with [Kl] what
we assume is that b is "universal". Such a field & is a quite artificial being; but since all
problems related to algebraic differential equations can be "embedded" into "problems over 2"
the use of this field appears to be extremely useful and in any case it greatly simplifies
vlanguage. Next one considers the ring of differential polynomials (shortly A - polynomials)
ZL{yl,... yn} which by definition is the ring of polynomials with coefficients in & in the

indeterminates

k k
Yl,---yn,)"l,---,)"n,---,y(l )7---1yf.‘)y'--

E.g. the expressions appearing in the left hand side of the equations (1), (2), (3) (where we
assume now ai,a,t €W, t'=1, ceX) are A - polynomials. Now for any finite set Fl""’Fm of
A - polynomials we may consider their set £ of common zeroes in the affine space A"Q) ='Zl.n;
such a set will be called a A - closed subset of U". A - closed sets form a Noetherian topology
on U" called the 4 - topology which is stronger than the Zariski topology. For instance the
equation (1) defines an irreducible A - closed subset of the affine line Al(u) =U while the
systems (2) and (3) define irreducible A - closed subset of the affine plane Az(?l.) =u2.

Any irreducible A - closed subset % in 2" has a natural sheaf (for the induced
A - topology) of 2 - valued functions on it called the sheaf of A - regular functions; roughly
speaking a function on a A - open set of ¥ is called A - regular if, locally in the A - topology,
it is given by a quotient of A - polynomials in the coordinates. ¥ together with this sheaf will be
called an affine differential algebraic manifold (shortly, an affine A - manifold).

An irreducible ringed space locally isomorphic to an affine A - manifold will be called a
differential algebraic manifold (or simply a A - manifold). Given a A - manifold 3, the direct
limit, over all A - open sets  of §, of the rings of A - regular functions on () is a field denoted
by 2< £ >, The transcendence degree of 7{< £ > over 2{ will be called the dimension of § and
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intuitively represents the number of "integration constants" of which the points of ¥ depend.
E.g. the p - closed sets given by equations (1), (2), (3) have dimensions n, 2, 2 respectively.

A map between two A - manifolds will be called A - regular if it is continuous and pulls
back A - regular functions into A - regular functions. We are provided thus with a category
which has direct products called the category of A - manifolds. Note that any algebraic
U- variety X (reA$pectively any X - vavriety Xo) has a natyral structure of A - ananifold which
we denote by X (respectively by Xo); we have dim Xo = dim Xo and dim X = o provided
dim X > 0.

Finally we define differential algebraic groups (or simply A - group) as being group
objects in the category of A - manifolds, i.e. A - manifolds T whose set of points is given a
group law such that the multiplication T' x I' + I' and the inverse T' y I are A - regular maps.

Differential algebraic groups of finite dimension will be simply called A, - groups.

The equations (1), (2) clearly provide examples of Ay - groups. As for equations (3) the

- groups which can be derived are not the A - closed subsets of A2 given by (3) but their
A closures in (P ) , which contain an additional point (0 : 1 : 0), the origin of these groups.

We leave open the question whether our A - groups "are" the same with Kolchin's [Kz];
one can show that any A - group in our sense "is" a A - group in Kolchin's sense. Moreover one
can show that our A - groups "are" precisely Kolchin's irreducible " A - groups of A - type
zero". Finally note that our concept of "dimension" corresponds to Ritt's concept of "order" [R]
and also (in case we have "finite dimension") with Kolchin's concept of "typical A - dimension"

[K 1 IK 2].
4. Strategy

Cassidy and Kolchin developed their theory of differential algebraic groups in analogy
with the theory of algebraic group. Our viewpoint will be quite different: we will base our
approach on investigating the relations, not the analogies, between the two theories.

Our strategy has two steps. Step | will consist in developing a theory of what we call
"algebraic D-groups"; this will be done in Chapters 1-4 of the book. Then Step 2 will consist in
applying the latter theory to the study of A, - groups; this will be done in Chapter 5.

Let's explain the concept of algebraic D-group; for convenience we will give in this
Introduction a rather restricted definition of it (which will be "enlarged" in the body of the
text). Let Y, §,X be as in Section 3 above and let

D =Ul§]= ‘I,(,Gi (direct sum) £
i>0

be the J( - algebra of linear differential operators generated by % and §. By an algebraic
D-group we will understand an irreducible algebraic U- group G whose structure sheaf QG of
regular functions is given a structure of sheaf of D - modules such that the multiplication,
comultiplication, antipode and co-unit are D-module maps; in other words if p:GxG +G,
S:G »G are the group multiplication and inverse and if e ¢ G is the unit then for any regular
functions ¢, y defined on some open set of G we have the formulae



8(4) = (SO + &(SV)
(60)op=(8@®1+1®8Xd o)
8(doS)=(Sd) oS

§(d(e)) = (6)e)

Some people might like to call such a structure "an algebraic group with connection along ¢";
we were inspired in our terminology by the paper of Nichols and Weisfeiler [NW]. Note however
that unlike in [NW] we do not assume G is affine, imposing instead that G is of finite type over
U! Algebraic D-groups entirely belong to "algebraic geometry" (rather than to the Ritt-Kolchin
"differential algebraic geometry") hence Step | will inevitably be performed in the field of
algebraic geometry; the task of classifying algebraic D-groups will be sometimes quite
technical but in the end rewarding.

Step 2 will be based on the result that "the category of Ao - groups" is equivalent to "the
category of algebraic D - groups"; for any Ao -group I' we shall denote by G(T) the
corresponding algebraic D-group. Note that (the underlying group of) T appears as the group of
all points @ € G(TXWU) for which the evaluation map (’(‘,(I'),a +U is a D-module map; actually T
appears as a A - closed subgroup of G(T) % Note that the function field Z(G(T)) identifies with
U< T > Then Step 2 will deal with the (sometimes not so obvious) translation of properties of
algebraic D-groups into properties of Ao - groups. In order to get a feeling about the
correspondence I' # G(T) let's look at the examples we began with (equations (1), (2), (3)).

If T is derived from equation (1) then G(T) is the algebraic vector group
G; = Specu[Eo,El, En_l] equiped with the D-module structure of its coordinate algebra
defined by

6‘E°= El
551 =€2
6€n-l =- algn-l - aZEn-Z Tl T ango

(and by the condition that § is a derivation of 'U.[Eo, ces ,En_l]).
If T is derived from equation (2) then G(T) is G xG, = Spec‘u.[)(,)(-l,i], the product of
the multiplicative and additive groups, equiped with the D-structure defined by

8x=xE
S§E= - ak

In case T is derived from (3a), G(T) can be proved to be the product A x G, while in case
T is derived from (3b), G(T) is a non-trivial extension of the elliptic curve A by G, Note that
in the latter case G(T) does not descend to X (because A doesn't).

5. Results

According to the preceeding section the classification problem for Ao - groups reduces



to answering the following question: given an algebraic - group G describe all structures of
algebraic D-groups on G; call their set P(G/§). Note that P(G/§) is a principal homogeneous
space for the 2 - linear space P(G/%) of all 2- linear maps D : (% > dG satisfying equations
(5) with D instead of §. So we are faced with two problems here namely:

1) What irreducible algebraic - groups G admit at least one structure of algebraic
D - group ?

2) Describe P(G/2) for any such G.

Both these problems have a deformation - theoretic flavour: the first is related to
deformations of the algebraic groups themselves while the second is related to infinitesimal
deformations of automorphisms of our groups.

Let's consider these problems separately and start by stating our results on the first of

them.

THEOREM 1. Let G be an affine algebraic - group. Then G admits a structure of
algebraic D - group if and only if G descends to ¥X.

The proof of Theorem | will be done in Chapter 2 and will involve analytic arguments,
specifically results of Mostow-Hochschildt [HMl] and Hamm [Hal. We already noted that
Theorem 1 may fail in the non-affine case; we shall describe in what follows a complete answer
to problem 1) in the commutative (non-affine) case. The formulation of the next results
requires some familiarity with [Se], [KOJ. Their proofs will be done in Chapter 3.

So assume G is an irreducible commutative algebraic - group and make the following

notations:

L(G) = Lie algebra of G
Xm(G) = Hom(G,Gm) = group of multiplicative characters of G

Xa(G) = Hom(G,Ga) = group of additive characters of G.
Recall [KO] that we dispose of the Gauss-Manin connection:
1 1
v: Derx'u. > Homx(HDR(A), HDR(A)), p Vp

on the de Rham cohomology space HIIJR(A) of the abelian part A of G (where A = G/B, B = linear
part of G = maximum linear connected subgroup of G).
We will introduce in Chapter 3 a "multiplicative analogue" of the GaussiManin.

connection which is a U- linear map
. 1 1
LV : Delfx‘u + Homgr(HDR(A)m’HDR(A»’ p & le

where Hll)R(A)m is the first hypercohomology group of the complex [MM]:

dlog d d
1 * 1 2
*OA > QA/?L* QA/'U.*“'
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View now G as an extension of A by B, let S(G) and S(G) be the images of the natural maps

X_(B) +H (0 )and X _(B) + Pic °(A) [Se] and let Sp (G)a and S, o(G)_ be the inverse images
" " 1 1 . O

of S(G)a and S(G)m via the "edge morphisms HDR(A) +H (@A) and HDR(A)m + Pic (A).

THEOREM 2. Let G be an irreducible commutative algebraic %-group. Then G admits a
structure of algebraic D - group if and only if

EV(SDR(G)m) c SDR(G)a and
Spgr(G),) < Spr(C),

In particular if G is the universal extension E(A) of an abelian - variety A by a vector group
then G has a structure of algebraic D-group (recall that E(A) is an extension of A by Gg,
g = dim A, having no affine quotient); this consequence of Theorem 2 is also a consequence of
the Grothendieck-Messing-Mazur crystalline theory [MM]. Note that the algebraic D - group
G(T') associated to the A - group derived from the equation (3b) above is a special case of this
construction! Note also that Theorem 2 says more generally that any extension of E(A) by a
torus Grl:l1 has a structure of algebraic D - group !

Theorem 2 will be deduced from a general duality theorem relating the Gauss-Manin
connection and its multiplicative analogue to the "adjoint connection" on the Lie algebra of
commutative algebraic D - groups. Our duality theorem generalizes certain aspects of the
theory in [MM] and [BBM] and our proof is quite "elementary" (although computational !).

Let's pass to discussing "problem 2)" of "describing P(G/%).

It is "well known" that the automorphism functor

Aut G : { U- schemes} + {groups}

(AutGXS) = Aut G xS)

S-grsch.

of an algebraic - group G is not representable in general [BS] (by the way we will prove in
Chapter 4 that the restriction of AutG to freduced U - schemes} is representable by a locally
algebraic U- group Aut G this providing a positive answer to a question of Borel and Serre [BS]
p. 152). Then P(G/U) is obviously identified with the Lie algebra L(Aut G) of the functor Aut G,
which contains the Lie algebra L(Aut G), but in general exceeds it (due to "nonrepresentability
of Aut over non-reduced schemes"). If G is commutative P(G/2) is easily identified with
Xa(G)oL(G) (where Deru'(gG is identified with &(G)®L(G)). For noncommutative G the
analysis of P(G/2) will be quite technical; we will perform it in some detail for G affine and get
complete results in some special cases (e.g. in case the radical of G is nilpotent or if the
unipotent radical of G is commutative), cf. Chapter 2.

Let's discuss in what follows the "splitting" problem for algebraic D-groups. If Go is any
irreducible algebraic J - group one can construct an algebraic D - group G=G°® U by letting
D act on wG via 1 ® §; any algebraic D - group isomorphic to one obtained in this way will be
called split. A Ao - group will be called split if it is isomorphic to Go for some algebraic
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X - group Go; this is equivalent to saying that G(T') is split. For instance the A -group T
defined by equation (1) above is split; for if Yiree Y e U is a fundamental system of solutions

of (1) then we have an isomorphism of A - groups
n v n
o) X"t
(cl, e ,cn) + ICy;

On the contrary the A, - groups derived from equations (2) and (3) are not split; for (3b) this is
clear because G(T') does not descend to X while for (2) this follows because the D-submodule of
'u[x,x-l,x] generated by y is infinite dimensional. Now for any algebraic - group the set of
split algebraic D - group structures on G can be proved to be a principal homogenous space for
L(AutG) so, at least in case G descends toX, the problem of determining what algebraic
D - group structures on G are split is equivalent to determining what elements of L(AutG)
actually lie in L(Aut G). In particular if G descends to X and Aut G is representable then any
algebraic D - group structure on G is split; this is the case if G is linear reductive or unipotent.
More generally we will prove in Chapter 4 the following:

THEOREM 3. For an algebraic D-group G the following are equivalent:

1) G is split.

2) § preserves the (ideal sheaf of the) unipotent radical U of the linear part of G.

3) § preserves the (ideal sheaf of) U/U n [G,G] in G/[G,G].

4) § preserves the maximum semiabelian subfield of the function field 2(G) (which by

definition is the function field of the maximum semiabelian quotient of G; recall that
"semiabelian" means "extension of an abelian variety by a torus").

Consequently a A -group T is split iff r/[r,r] is so, iff § prese;'\ves the maximum
semiabelian subfield of 2{ < T >; if in addition 1 is a A - closed subgroup of GLN for some N > 1
and we put I:=[ideal of all functions in u{yii}d, d = det (yij)' vanising on T} and %{T} :=
=U{ yii}d/l then T is split iff all group-like elements of the Hopf algebra Y{r} are killed by §.

We would like to close this presentation of our main results with a theorem about
A - subgroups of abelian varieties; we need one more definition. We say thatAa Ao - group T
has no non-trivial linear representation if any A - regular homomorphism I' + GLN is trivial.

THEOREM &. Let A be an abelian 2-variety of dimension g. Then there is @ unique
Ay - subgroup I’\"‘= with the following properties:

A
1) it is Zariski dense in A ,
2) it has no non-trivial linear representation.

Moreover as A varies in the modului space "48 n of principally polarized abelian %- varieties
9’
with level n - structure, n > 3, the function A p dim A* varies lower semicontinuously with

A
respect to the A - topology of ‘*g 5 and assumes all values between g and 2g.
3
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In case g = 1 one may say more namely:

a) either A descends to X, say A = A0 qu, and then A*= AO(K) so dim A# = 1.
b) or A does not descend to X and in this case dim a¥_ 2

Note that the A - group T defined by (3b) is nothing but the group A#above. On the other hand
the A - group T defined by (3a) is an extension of (Ga ,x)‘;]c by A* above.
t]

6. Amplifications

Most definitions given so far in our Introduction will be "enlarged" in the body of the text
and most results will be proved in a generalized form. For instance the definitions related to
A - manifolds and A - groups will be given for "partial" rather than "ordinary" differential
fields, i.e. for fields % equiped with several commuting derivations. Algebraic D - groups will
be allowed to be reducible and will be defined for D = K[P] any "k-algebra of linear differential
operators on a field extension K of k" which is "built on a Lie K/k-algebra P" (cf. [NW] or
Section 0 below); this degree of generality and abstractness might seem excessive, but it is
motivated in many ways:

1) our wish to deal with A - groups over partial differential universal fields

2) our wish to "compute", for a given algebraic K-group G (K algebraically closed of
characteristic zero, containing a field k) the smallest algebraically closed field of definition KG
of G between k and K; the existence of KG was proved in [Bj] but we will reprove this in a
different way in Chapter 4.

3) our wish to relate our topic to Deligne's "regular D-modules".

4) our wish to take a (shy) look at "algebraic D-groups in positive characteristic".

The reader will appreciate the usefulness of this more general concept of algebraic D-group in

the light of the arguments 1)-4) above.

7. Plan

The book opens with a preliminary section 0 which fixes terminology and conventions. In
Chapter 1 we present the main concepts related to algebraic D-groups. Chapters 2 and 3 are
devoted to affine, respectively to commutative algebraic D-groups. Chapter 4 deals with
algebraic D-groups which are not necessarily affine or commutative. Chapter 5 opens with an
introduction to A - manifolds and A - groups and then deals with the "structure" and "toduli"
of A - groups.

Internal references to facts not contained in section 0 will be given in the form (X,y,z) or
simply (X,y) where X is the number of the chapter and y is the number of the section. Within
the same chapter X we write (y,z) instead of (X,y,z). References to section 0 will be given in
the form (0,z). Each chapter will begin with a brief account of its contents and of its specific

conventions.
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8. Prerequisites

The reader is assumed to have only some basic knowledge of algebraic geometry [Har]
and of algebraic groups [H], [Ro], [Sel. The non-experts in these fields might still appreciate the
results of this book via our comments and various examples.

No knowledge of the Kolchin-Cassidy theory [K iICj] is assumed; the elements of this
theory which are relevant for our approach will be quickly reviewed in the book.

Finally one should note that the present book is ideologically a continuation of our

previous book [B l]; but it is logically independent of it.

9. Aknowledgements

A few words cannot express the thanks I owe to Ellis Kolchin and the members of his
Columbia Seminar: P. Cassidy, R. Cohn, L. Goldman, J. Johnson, S. Morison, P. Landesman, W.
Sit. Their continuous encouragment, constant support and numerous suggestions played an
important role in my fulfilling the task of writing this book.

I would also like to aknowledge my debt to H. Hamm and O. Laudal for useful
conversations.

Last but not least I would like to thank Camelia Minculescu for her excellent typing job.

June 1989
Revised: June 1991 A. Buium



CONTE

0. TERMINOLOGY AND CONVENTIONS .

CHAPTER 1. FIRST PROPERTIES , ¢ s s s 6000 somasannmossionesscssesensnens
1. Basic spaces and maps .. ... . G A e ey e e e s .
2. Prolongations and embeddings . . . .. ... . i i . covene
3. Local finiteness and splitting . ....... suEssmEe e sess ey
CHAPTER 2. AFFINE D-GROUP SCHEMES . . . vttt v i i vt innnannn ceveens
1. The analytic method « cc s cewssisenasoenonsseosssessnsssssnsoseins
2. The algebraic method: direct products.......... . cssersssannsese
3. The algebraic method: semidirect Products « c v oo evceoe cesesevesssnas
CHAPTER 3. COMMUTATIVE ALGEBRAIC D-GROUPS . . ... vivinnnnnnnn cewe
1. Logarithmic Gauss-Manin connection....... seesessesssseeensne .
2. Duality theorem . ..o v v v v v v SR s e Y s EE e s S
3. Descent. Regularity . . .. ....ocivnnn. R O S SRS
CHAPTER 4. GENERAL ALGEBRAIC D-GROUPS . . . ..t i ittt iiiennnnennn ve
I. Local finitness criterion............... Cessesesssesrsersnesnnn
2. Representing the automorphism functor . . . .. ... cviii i een “s
3. Products of abelian varieties by affinegroups . .. .......ciiiiiiins
CHAPTER 5. APPLICATIONS TC DIFFERENTIAL ALGEBRAIC GROUPS.........
1. Ritt-Kolchin theory « s s s s s s soessnsessonssssmsassonsssesssosess
2. Ao-groups versus algebraic D-groups . .« c et i ii it i ittt i
3. Structure of B -BrOUPS vvvvnvnnenerrnnnn. sessesssnsessseees
4. Moduli of Ao-groups ..... T EET S s eSS e e e
APPENDIX A. Link with movable singularities.......... cremm s ceesesssanes
APPENDIX B. Analogue of a diophantine conjecture of S. Lang . .... csesessensas
APPENDIX C. Final remarks and quUestions . « v v v vt vttt evnnnennnnoenensons
REFERENCES...... R R e IR T TR L A IA T EY T AT
INDEX OF TERMINOLOGY ...... R R T AR T E IR E L 5
INDEX OF NOTATIONS ... .. R Ry e N e L L LI LT Sio e

NTS

20
24
30
30
37
43
60
60
66
81
87
87
91
96
99
99
106
116
123
136
139
139
141
144
144



0. TERMINOLOGY AND CONVENTIONS

(0.1) Unless otherwise stated rings, fields and algebras are generally assumed associative
commutative with unit. This will not apply however to Lie algebras, universal enveloping
algebras or to Hopf algebras (the latter are understood in the sense of Sweedler [Sw]).

(0.2) Terminology of algebraic geometry is the standard one (cf. for instance [Har]DG]J).
Nevertheless we make the convention that all schemes appearing are separated. For any
morphism of schemes f : X +Y we generally denote the defining sheaf morphism @Y S ”x by
the same letter f. If both X and Y are schemes over some field K then by a K- f-derivation we
mean a K-derivation of @Y into the UY-module i, @X. By a K-variety (K a field ) we will
always mean a (separated!) geometrically integral K-scheme of finite type. By a (locally)
algebraic K-group we will mean a geometrically reduced (locally) algebraic K-group scheme.
For any integral K-algebra A (respectively for any integral K-scheme X) we let K(A)
(respectively K(X)) denote the quotient field of A (respectively of X). For any K-variety X and

any field extension KI/K we denote by X(Kl) the set Hom h(SpecKl, X) of Kl-points of X;

K-scl
more generally we write X(Y) instead of HomK—sch(Y’X) for any K-schemes X,Y. A morphism
X +Y of K-varieties will be called surjective if the map X(K) + Y(K) is surjective. For any
K-scheme X, TX will denote the sheaf DerK(ﬂx. If X =SpecA for some K-algebra A we

sometimes write Der(A/K) instead of DerKA.

(0.3) All affine K-group schemes G are tacitly assumed to be such that the ring @(G) of
global regular functions is at most countably generated as a K-algebra. This is a harmless
assumption in view of our applications in Chapter 5.

The unit in any K-group scheme G will be denoted by e; if G is commutative we will
sometimes write 0 instead of e.

For any locally algebraic K-group G, G° will denote the identity component; Z(G) will
denote the center and we put Z°(G) := (2(G))°.

(0.%8) For any algebraic € - variety X (respectively algebraic € - group G) we denote by
xan (resp. G3") the associated analytic space (respectively the analytic Lie group). For any

analytic manifold X we denote by Tx the analytic tangent bundle.

(0.5) Our terminology of differential algebra is a combination of terminologies fér;om [Ci]
[Ki] [NW] and [Bi]' In what follows we shall review it in some detail and also introduce some new
concepts.

Let K/k be a field extension. By a Lie K/k - algebra [NW] we mean a K-vector space P
which is also a Lie k-algebra, equipped with a K-linear map 9 : P +Der K of Lie k-algebras
such that

[pl,;\pz]= 3(p,XNp, + Ap;,p,] for reK, p;,p,eP



Let's give some basic examples of Lie K/k - algebras.

EXAMPLE 1. Start with a derivation deDerkK; one can associate to it a Lie
K/k - algebra P of dimension 1 over K by letting

P =Kp
[)\lp,)\zp] = ()\ldkz - )\zdll)p , )‘I’)‘Z €K
So we call the attention on the fact that this P is far from being commutative!

EXAMPLE 2. Start now with a family of derivations (di)iel’ d; € Der K. Then one can
associate to it the "free Lie K/k-algebra" P built on this family: by definition P has the
property that it contains a family of elements (Pi)iel with a(pi)=di such that for any

K/k - algebra P' and any family (p‘i) p'ieP' with 3'(p'i)=di there is a unique Lie

iel’
K/k - algebra map f : P + P' with f(p,) = p|. We leave to the reader the task of constructing this

P. Note that if I consists of one element this P is the same with the one in Example 1.

EXAMPLE 3. Assume we are given a family (di)iel 5 kK such that [di’di] =0 for

all i,j € 1. Then one can construct a new Lie K/k-algebra P as follows: we let P have a K-basis

di € Der

(p.).., we let 3(p.) = d. and define the bracket [, ] by the formula
i'i€l 1 i
[)\pi,upj] = A(dip)pj - p(djx)pi y  MUEK, jEl

This P can be called the "free integrable Lie K/k-algebra" built on our family of derivations.

Once again if I consists of one element, this P coincides with the one in Example 1.

EXAMPLE 4. Let k €E €K be an intermediate field. Then P = Der

inclusion 3 : DerpK = Der K is an example of Lie K/k - algebra.

Other remarkable examples of Lie K/k - algebras will appear in (I.1).

EK together with its

Given such a P one associates to it [NW] a k-algebra of differential operators D = K[P]:
by definition K[P] is the associative k-algebra generated by K and P subject to the relations

Ap =v(A,p) for A€ K, p€ P where v:K x P + P is the vector space structure map
pA -Ap=3(p)A) for AeK,peP $

PPy = PP = [P19P2] for PP € P
e e

Recall [NW] that D = K[P] has a K-basis consisting of all the monomials of the form P; L P; "
1

n

where ejZO and iI _<_...5_in in some total order on a basis (pi)i of P. For instance if P is

I-dimensional, P = Kp, as in Example 1 above then

D=I Kp' (direct sum)
>0



is the ring of "linear ordinary differential operators" on K "generated by K and p";
multiplication in D corresponds to "composition of linear differential operators". This example
is quite familiar: indeed, assume k =C, K =C(t) is the field of rational functions and
3(p) = d/dt; then D = C(t)(d/dt] is nothing but the "rational" Weyl algebra. Similarity one can
obtain the 'rational" Weyl algebra in several variables D = C(tl’ ces ,tn)[d/dtl, wed ,d/dtn]
starting with P as in Example 3 above. Since D is a ring we may speak about D-modules (always
assumed to be left modules). If V is a D-module we define its set of P-constants VD =Kk eV;
px =0 for all p e P} it is a vector space over the field KD =\ eK; px =0 for all p ¢P}. We
sometimes write also VP and KP instead of VD and KD and speak about P-modules instead of
D-modules. Recall from [NW] that if V,W are D- modules then V@ W, V® W and HomK(V,W),
hence in particular VO - HomK(V,K), have natural structures of D - modules and the following

formulae hold

p(x,y) = (px,py) forpeP, (x,y)eVeoW
px®y)=px®y+x®py forpeP, x®@yeV® W
(pf)(x) = p(f(x)) - f(px) forpeP, x eV, f¢ Homy (V,W)

By a D - algebra (respectively associative D - algebra, Lie D - algebra, Hopf D - algebra) we
understand a D - module A which is also a K - algebra (respectively an associative K - algebra,
Lie K - algebra, Hopf K - algebra) in such a way that all structure maps are D - module maps;
here by 'structure maps" we understand multiplication A QKA +A, unit K +A,
comultiplication A + A QKA and co-unit A +K(A ® A and K are viewed with their natural
D - module structure). A D - algebra is called D - finitely generated if it is generated as a
K - algebra by some finitely generated D - submodule of it.

Note that if P is as in Example 1 (respectively 2, 3) a D - algebra is simply a K - algebra
A together with a lifting of the derivation d € DerkK to a derivation d ¢ DerkA (respectively
yith liftings of di to di eDerkA in case of Example 2 and with pairwise commuting liftings
di € DerkA in case of Example 3).

A D - algebra which is a field will be called a D - field. Clearly K is a D - field. K will
be called D - algebraically closed if for any D - finitely generated D - algebra A there exists a
D - algebra map A +K.

Of course one would like to "see" an example of D - algebraically closed field.
Unfortunately we can't "show" any (although one can prove the existence of enough of them, see
(0.12) below). But one should not forget that with a few exceptions a similar situation occurs
with algebraically closed fields.

Note that if A 1

Clearly if A is a D - algebra then Im(P » EndkA)C DerkA. If no confusion arrises we

A2 are D - algebras then Al @KAZ becomes a D - algebra.

denote the image of any pe P in DerkA by the same letter p.

(0.6) Following [Bl] we can define D - schemes: these are K - schemes X whose structure
sheaf @X is given a structure of sheaf of D - algebras (i.e. UX(U) is a D - algebra for all open
sets U and restriction maps @X(Ul).. ﬂx(uz) for U2c Ul are D - algebra maps). For any



