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PREFACE

THE object of this book is to provide in a compact form an
acconnt of the methods of integrating explicitly the
commoner types of ordinary differential equation, and in
- particulsr those equations that arise from problems in
geometry and applied mathematics. It takes the existence
of solutions for granted ; the reader who desires to look into
the theoretical background of the methods here outlined
will find what he seeks in my larger treatise Ordinary
Differential Equations (Longmans, Green & Co., Ltd., 1927).
With this qualification, it will be found to contain all the
material needed by students in our Universities who do not
specialize in differential equations, as well as by students
of mathematical physics and technology.

As one of the first things a beginner has to learn is to
identify the type to which a given equation belongs, the
examples for solution have not been printed after the
sections to which they refer, but have been collected at the
end of the book. When the contents of the first chapter
have been mastered, the reader may test his skill by
attacking examples selected at random from Nos. 1 to 122,
and similarly for the later chapters. The examples occur
roughly in the order of the table of contents, so that
working material is always available as reading progresses.

In conclusion, I wish to record my thanks to the General
Editors for their encouragement and help during its growth
and passage through the press.

May 1939 E.L L

The Second Edition, through the untimely death of the
. author in March 1941, has not had the advantage of being
revised by him. The Editors are indebted to Dr I. M. H.
Etherington and Miss N. Walls for some corrections, and to
Dr A. Erdélyi for undertaking a scrutiny of the book and
recasting parts of Chapter VI.

A.C A
April 1043 D.E. R.
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CHAPTER I
EQUATIONS OF THE FIRST ORDER AND DEGREE

1. Definitions. Let x be an independent, and y & de-
pendent variable; let y', ", . . ., y'™ represent successive
derivatives of y with respect to . Then any relation of
equality which involves at least one of these derivatives is
said to be an ordinary differential equation. The term
ordinary distinguishes it from a paertial differential equation,
which would involve two or more independent variables, a
dependent variable, and the corresponding partial deriva-
tives. The order of any differential equation is the order
of the highest derivative involved. Thus any relation of
the form
Flo, 9,9, ¥, .. ., y")=0

is an ordinary differential equation of order n.

. Differential equations, both ordinary and partial, are
of frequent occurrence in mechanics and mathematical
physics, but the illustrations that best serve to introduce
the subject are taken from the geometry of plane curves.

The equation
flz, 9, C)=0, . . « (1.1)
in which z and y are rectangular co-ordinates and C is a
parameter or arbitrary constant, represents a family of
curves, in which one curve corresponds to one value of O,
another curve to another value. If, regarding C for the
moment as fixed, we differentiate with respect to x, we

obtain
e o ,
~65+—8?/y =0. . . - (1.2)

1 B



2 DIFFERENTIAL EOUATIONS

Generally speaking, {1.2) will involve C; if C is elimi-
nated between the two equations, there will result an
equation involving z, ¥, and ¥/, say

Fz,y,9)=0, . . . (13)
that is, an ordinary differential equation of the first order.
When such an equation is polynomial in y" (but not$
necessarily in « and y) the index of the highest power of
y involved is said to be the degree of the equation.

Geometrically, the differential equation (1.3) implies
that at any chosen point of the (z, y)-plane the derivative
has a certain value or values, that is to say it symbolizes
a property of the gradient of any curve of the family (1.1)
that passes through the point (z, y) considered.

Ezample 1. The equation

y=2'4+C
represents & family of equal parabolas having the y-axis as
their common axis. On differéntiating with respect to =z
we have

y =2,
The arbitrary constant (' has disappeared. sa that this is
actually the differential equation of the family of parabolas.
Tt expresses the fact that all the curves of the family have the
same gradient at tho points where they are cut by a line

parallel to.the y-axis, namely a gradient equal to twice the
abseissa of the line.

Example 2. The equation
y=Cz?

represents a family of similar parabolas having the y-axis as
their common axis, and all touching the z-axis at the origin.
Differentiating, we obtain

Yy’ =2Cz,
which involves C; if this constant is eliminated we obtain the
differential equation

y’ = Zy/.’c,
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which expresses the property that any line y =m« through the
origin intersects all curves of the family in points where they
have the same gradient 2m.

2. Integration. The process of elimination by which
the differential equation (1.3) was obtained from the
primitive equation (1.1) is in general not reversible; the
aotion of recovering the primitive, or an equivalent
expression, is kmown es iniegration. More precisely, to
integrate or solve a differential equation of the first order
is to determine all the relations f(z, y) =0 such that the
values of y and ¥’ deduced from them in terms of z shall
satisfy the differential equation identically.

When an infinite set of such integrals can be grouped
in one comprehensive formula, involving an arbitrary
constant, say
' Jlz, 4, C)=0,

it is known as a general integral; it is in fact either the
primitive or an expression equivalent to it.* Any integral
that can be obtained by assigning a definite numerical
value to C is a parlicular integral. But there may be
integrals other than those that can be obtained by assign-
ing particular values to C'; these are singular integrels.
As an example, the equation

') -2y’ +y=0 :
(which is of the first order and second degree) possessea the
general integral y=Cxz - C% "This represents a family of
straight lines, and any particular integral corresponds to a
definite line in the family. But the equation is satisfied also

by y =}a*, which represents not a straight line but a parabola.
This i8 a singular integral.

* General theory proves that a differential equation of the firat
order haa one and only one distinet general integral. If two integrals
exist, each of which involves an arbitrary constant, they can be
transformred into one another. See § 3, Ez. 2.



4 DIFFERENTIAL EQUATIONS.

The remainder of this chapter will be devoted to
equations of the first order and first degree; that is, to
equations that may be written.in the alternative forms

P(z, y) + Oz, y)y' =0, . . @20
P(z, y)dx + Q(z, y)dy =0, . . (2.9

where P and @ do not involve the derivative y'.
Since from any primitive equation of the form

u(z. y)=0C, . . . (2.3)
where C is an arbitrary constant, we deduce that
ou ou
adx + -a—?}dy =0~,
it follows that a necessary condition for (2.3) to be an
integral of (2.2) is
ou Ou
Pal —Q%=0. . . (24)
3. Separation of Variables. Among equations of the
type Pdxz +Qdy =0 the simplest are those in which P is a
function of z alone and @ of y alone, say P = M(x), @ = N{y).
The general integral is obtained by direct intcgration,
thus:
S M(z)de + [N(y)dy =C,

where O is the arbitrary constant of integration.

More generally, let P and @ be the products of a term
involving x but not y and a term involving ¥ but not z,
s0 that the equation has the form

M(z)B(y)dz + N(y)S(zx)dy =0.
The variables are then said to be separable, for on diviaion
by R(y)S(x) the equation becomes
Miz), N(y)

g
8@ “* T Riy)

dy =0
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and has the general integral

J g((:))d + [z N((Z))

When, as in the above cases, the process leads to an
expression that involves integral signs the result is said
to be an integration by quadratures. This implies that the
problem has been reduced from one in differential equations
to an equivalent in the integral calculus. If it is found
impossible to evaluate one or sther of the integrals, an
explicit solution of the equation is impossible, and the
solution by quadratures must be regarded as the best

attainable, unless an alternative line of approach can be
discovered.

= —~dy=0C.

Example 1.
z(y* - dr ~ y(z* - 1)dy =0.
Separating the variables:

zdx ydy
-1 -1
Integrating,
logfa*-1]-log|y*-1]=C
or
x?
log —' l = -loge

: _—1

which may be written :
(y*-1)=c(z® -1).

{Note that replacing the arbitrary constant C by another

arbitrary form, as in this case € = - log ¢, may help to simplify
the general integral.)

Ezxample 2.
dz + dy _
V-at) V(1 -yt)

The variables are separate; direct integration gives

are sin x +arc siny =C
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which is the general integral. This may be transformed into
an equivalent expreesion by slightly rearranging the terms
and taking the sine of both members, thus:
g8in {are sin y} =sin {C - arc sin z}

or, since

cos {arc sin z} = +4/(1 —2Y),

y=1+/(1 -2 sin C -z cos 0
and, rationalising, ‘

(y +z cos O)*=(1-2*)8in? 0,
i.e.

z* +y* +2zy cos C =sin? 0
or, if ¢ =coa C,
2yt + 200y =1 -2
Ezxample 3. A change in variables may sometimes succeed
in converting an equation into another with separate variables.
For instance, in
(z+y)dz +dy=0
the variables are not separable, but if y is replaced by v - =, the
equation is transformed into
(v - 1)dz +dv =0.

The variables z and v are separable, thus

dz + _gv_ =0
v-1
which leads to
z+loglo-1|=1loge or (v-1)e®=c
go that the original equation has a general integral of the form
(z+y -1ef=¢, or y=ce -2+l

The most important instance of reduction by change of
variables occurs in the case of the homogeneous equation which
now followa.

4, The Homogeneous Type. The equation

P(x, y)dx +Q(x, y)dy =0
is said to be of homogeneous type when P and @ are
homogeneous functions of z and y of ‘the same degree. 1f
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the degree is m, the substitution y =vz will reduce P and @
to the forms

P(x’ vz) =me(v)a Q(x; vz) =me(v),
where R and § are independent of z. Thus the factor «m
may be cancelled out of the equation, which becomes

E(v)dx + S(v){vdx + zdv} =0
or
{R(v) + vS(y)}dz +xS(v)dv =0.
Separating the variables and integrating, we have
S(v)dv
I R(v) +vS(v)
and when the integral in v has been evaluated, the sub-

stitution v =y/x will give the general integral of the original
equation,

Ezample 1.

+log 2 =C,

(w* - y*Mdz + 22ydy =0.
The two ferms in this equation are homogeneous and of the
second degree in z and y; the above process is therefore
applicable. Making the substitution mentioned, we have
z¥(1 - v*)dx + 2x3v{vdx + zdv) =0;
z* cancels out, leaving
(1 +v*)dz + 2vxdv =0,
Separating variables and integrating:
2vd de
2=
14 j =
or
log (1 +v?) +log z =log e,
ie
(L+v¥)z=c
which leads to the general integral
xt +yd =cx.
Ezxample 2.
(2ye¥'= —z)y" +2r +y =0.
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Here each term is of the first degree in z and y, for e¥/% is of

degree zero. Writing y=vz, y' =av’ +v and cancelling r, we
obtain

(2ve® - 1)av’ +2(13¢® +1) =0,
Separating the variables, this becomes
Moo, e
1t te- %
Integrating, we have
- log (*+e*)+21log x=C,
whence the general integral

Yt + eV =g,

5. The Equation with Linear Goefficients. - Although
the equation :

(az +by +c)dx + (a'z +b'y +c Yy =0 . (bd)
is not of homogeneous type, it may be reduced to that
type by a simple substitution. The equations

ax +by +¢=0, az+by+c' =0 . (52)
ropresent & pair of straight lines which will intersect unless
the condition for parallelism, i.e. ¢'ja =b'/b or ab' ~a'b=(,
ia satisfied. Let (h, k) be the point of intersection; transfer
the origin to that point by the substitution

z=h+X, y=k+Y
and the equation will becoine
(aX +bY )X +(’X +b'Y)dY =0.

It is now homogenecus; the substitution ¥ =vX
followed by separation of variables leads to the general
integral

(@’ +b'v)dv ]
log OX + ar@bprin=Y
whose ultimate form * depends upon whether the roots

* For which see § 17 infra.
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of the denominator of the integrand are real, coincident
or imaginary, i.e. according as (a’ +b)? is greater than,
equal to, or less than 4ab’.

In the exceptional case when the lines (5.2) are parallel,

that is when a'/a=b'/b=k (say), the equation can be
written

(ax +by + c)dx + {k(ax + by) +c'}dy =0.
Take z =ax +by as a new variable to replace y, then
b(z + c)dx + (kz +¢')dz — adx) =0.
Separating the variables and integrating, we have
(kz +¢")dz
.[(b —ak)z +bc - ac’

The above are particular cases of an equation of the

type
' F ar+by+c
V= "\ezrby+c

which may be reduced to a form mt,egrable by quadratures
by the same routine process.

=const,

Example 1.
, Ao -y +7
T2 4y -1
The lines 42 -y +7=0, 2z +y ~ 1 =0 meet in ( - 1, 3); writing
z=X -1, y=Y +3 we have
(2X +Y)dY =(4X - Y)dX.
The transformation ¥ =vX reduces this equation to
(2 +v)Xdv + (v +3v -~ 4)dX =0

which becomes, on separating the variables and taking partial
fractions,

{._?_ +_.g_l +§§§-——0
v-1 o +4J v
Integrating.

3log |[v—-1|+2log|w+4|+blog{X|=0,
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i.e.
(v - 13y +4) X" =¢

or

. (Y - XY +4X)* =c.
Reverting to the variables x, y we have the general integral

(y -4y + 40+ 1) =c.
Example 2.
(22 -4y +5)y" +2 -2y +3=0.

if 2 =2 ~ 2y, 2y’ =1 -2’; with this transformation the equation
becomes '
2z + 5% =4z +11.

Separating the variables, we obtain

L
(1'4z+11/'dz‘2d‘”

whence
dz-log | 4z+11| =82 -0,
giving the general integral
4z +8y +log | dx -8y +11 = 0.

6. Exact Equations. When the primitive of a differential
equation involves the arbitrary constant € explicitly, as:

u(x, yi =0, . . . (8.1
the operation of taking the differential eliminates C
automatically, thus:

du(z, y) =0 . . . (6.2)
or

ou_~ ou
hoa £ 2 = . » » - , .n
axdz + @dy 0 6.3)

Conversely, if a differential equation of the form
Pz, y)dx + Qx, dy =0 . . (64)
has originated in such a process, and if no variable factor

has been canceiled out, it must be equivalent (o one of
the form (6.3) and thus to (6.2), and therefore it must
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possess & general integral of the form (6.1). Such an
equation is said to be exaci.

Thus, in order that (6.4) may be exact, there must
exist a function u(z, y) such that

ou ou
P(x: y)=5—z, Q(x: y) =5§ . . (6.5)

oP &u 8@
W oty o
Hence the theorem : for the differential equation (8.4)

to be cxact it is necessary that P(z, y) and Q(x, y) be linked
by the relation
oP @

o
This is known as the condition of inlegrability,* for when
it is satisfied the primitive u(x, y) =C can be recovered by
the following process. Starting from the relation

ou(z, y)
- oz

integrating and remembering that since the differentiation
with respect to = was partial, the inverse process of
integration will introduce, as the arbitrary element, a
function of y, we have,

u(z, y) =JP(z, y)dz +¢(y)
=8(z, y) +¢(v) (say).
But, on the other hand,

Q(x: y)ﬂ'a—y—a_?; +¢( )'

an equation which will give ¢'(y) since @ and S are both
known; the final integration to obtain ¢(y) will introduce
the arbitrary constant C' of the general integral.

and therefore

(6.6)

=P(z, y),

* Immediate integrability is implied; when the condition is not
satisfied, the equation is still integrable, though not without some
preliminary manipulation,
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Ezample 1.
(1 +y®)ydx +(1 +:c’;;_vi¥ -0
(1 422 42y :
Since, in the above notation,
oP 3{ y+y } 1+ 4% 4 3a%y
'Tg:y“ =F‘!) (1 422 +y2)o/s = (1 +2? +yajiizw
V _ @ { z +x —\ _QQ
Torl(V 42t 4y T o
the equation is exact. Hence we are entitled to write

' (1 +y*)yda
o = [

+é(y)
- ydz wiyde
_J(l 422 +y3)l/3 —IW +é(y)

dx @ 1
- ErF +Iwa{(_‘l e +y-w%}"’” +4)
xy
= Vo 1) +¢(y),
on integrating the second integral by parts. The equation
tu x +2°
o "ar vy TP
shows that ¢'(y) is zero, or ¢(y) is & constant. The goeneral
integral is therefore '
% __ _ec.
V(1 +2t +y?)
Note that although the given equation is exact as it stands,
it would cease to be exact if the denominator of the left-hand
member were rermoved.

Example 2.
log (y* +1)az + %y =0,
The condition for integrability is satisfied, therefore we
write
u(z, y)=[ log (y* +1)dz + $(y)
=z log (y* +1) + é(y).



