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Preface

These papers are the proceedings of the Twelfth George H. Hudson Symposium:
Mvances in Non-Commutative Ring Theory which was held by the Department of
Mathematics of the State University College of Arts and Science at Plattsburgh,
New York, and which took place on April 23-25, 1981.

The conference consisted of talks by five invited speakers and thirteen
other speakers who contributed papers, and in this volume we have collected
papers by two of the invited speakers and seven of the contributors. While not
all of the papers given at the Symposium appear in this volume, some of the
contributors have taken the opportunity to elaborate on their contributions.

At this time, the organizers of the Symposium would 1ike to express their
thanks to the following:

The National Science Foundation and, especially, Dr. Alvin Thaler for support
under NSF Grant MC580-1655.

Dean Charles 0. Warren and Mr. Robert G. Moll of the Dean's Office for expert
administrative support.

The Mathematics Department at PSUC and its chairman, Dr. Robert Hofer, for
moral support and a great deal of hard work.

Ms. Carol Burnam, secretary par excellence, without whom the entire project
would have fallen into chaos many times over.

Finally, to Dr. Paul Roman, Dean of Graduate Studies and Research at PSUC
who supplied excellent advice, unstinting support, vast amounts of time, and a

great deal of encouragement, we can only give a very inadequate "Thank you."

P. Fleury

Plattsburgh, N.Y.



Name

Maurice Auslander
John Beachy

Gary Birkenmeier
William Blair
Hans Brungs
Lindsay Childs
Miriam Cohen

Paul M. Cohn
Robert Damiano
John Dauns
Richard Davis
Warren Dicks

Car1 Droms

Carl Faith

Syed M. Fakhruddin
Theodore Faticoni
Jose Gomez

Edward Green

John Hanna

Allan Heinicke
Yehiel Ilamed
Marsha Finkel Jones
Jeanne Kerr
Jacques Lewin
Peter Malcolmson
Wallace Martindale
Gordon Mason
Robert Raphael
Idun Reiten
Richard Resco

J. Chris Robson
Jerry Rosen

Mary Rosen
William Schelter
Jan Van Geel

John Zeleznikow

List of Participants

Institution

Brandeis University

Northern I11inois University
Southeast Missouri State University
Northern I1linois University
University of Alberta

State University of New York, Albany
Ben Gurion University of the Negev
Bedford College, University of London
George Mason University

Tulane University

Manhattan College

Syracuse University

Syracuse University

Rutgers University

University of Petroleum and Minerals
University of Connecticut

I.B.M.

Virginia Polytechnic Institute and State University
University College, Dublin
University of Western Ontario

Soreq Nuclear Research Centre
University of North Florida
University of Chicago

Syracuse University

Wayne State University

University of Massachusetts
University of New Brunswick
Concordia University

University of Trondheim

University of Oklahoma

Leeds University

University of Massachusetts
University of Massachusetts
University of Texas

University of Antwerp

Michigan State University

Participants from State University College of Arts and Science,

Plattsburgh, New York

Joseph Bodenrader
Lonnie Fairchild
William Hartnett
Romuald Lesage
Kyu Namkoong

John Riley

Paul Roman

Ranjan Roy
Wei-Lung Ting
Donald C. West



TABLE OF CONTENTS

Invited Speakers

Paul M. Cohn
Torsion Modules and the Factorization of Matrices

Carl Faith
\_Subrings of Self-Injective and FPF Rings

Carl Faith
Embedding Modules in Projectives: A Report on a Problem

Contributing Speakers

John A. Beachy
Maximal Torsion Radicals over Rings with Finite Reduced Rank

Robert F. Damiano and Zoltan Papp
Stable Rings with Finite Global Dimension

John Dauns
Sums of Uniform Modules

Yehiel Ilamed
On Central Polynomials and Algebraic Algebras

Marsha Finkel Jones
Flatness and f-Projectivity of Torsion-Free Modules and Injective Modules

Peter Malcolmson
Construction of Universal Matrix Localizations

Erna Nauwelaerts and Jan Van Geel
Arithmetical Zariski Central Rings

12

21

41

47

68

88

94

117

132



TORSION MQDULES AND THE FACTORIZATION OF MATRICES

P. M. Cohn
Department of Mathematics, Bedford College,
Regent's Park, London NWI| 4NS.

|. For firs (and even semifirs) there is a fairly complete factorization
theory for elements and more generally for square matrices. In terms of modules
this leads to the category of torsion modules, and two questions arise naturally
at this point:

I. Do these or similar results hold for more general rings?

2. What can be said about the factorization of rectangular matrices?

Below is a progress report. |t turns out that torsion modules can be defined
over very general rings (weakly finite rings), but as soon as we ask for more
precise information we are hampered by the lack of a good factorization theory,
which so far is missing even for the semifirs' nearest neighbours, the Sylvester
domains. The basic results on the factorization of rectangular matrices are stated
here, but some shortcomings will be pointed out, which will need to be overcome in

a definitive ftreatment.

2. If R is a principal ideal domain, it is well known that any submodule of

R" has the form R™ with m ¢ n. So any finitely generated R-module M has a resolution
o 0+R">R">M> o0,

and n - m is an invariant, the characteristic of M, written X(M). By what has been
said, X(M) > 0 always; the modules M with X(M) = 0 are just the torsion modules.

An obvious generalization is to take rings in which each submodule of a free
module is free, of unique rank. These are just the firs (= free ideal rings, cf.
[2], ch. 1), e.g. the free algebra k<X> on a set X over a field k. But there is an

important difference, in that we can now have X(M) < 0; e.g. when R = k<X>,



M = R/(Rx + Ry) has X(M) = -I. To find an analog to the PID case we need the
notion of a positive module. This is a module M such that X(M'") > 0 for all
submodules M' of M. |f M is positive and X(M) = 0, we call M a torsion module.
As the presentation (1) shows, M is then defined by a square matrix A, and the
positivity of M means that A is full, i.e. we cannot write A = PQ, where P has
fewer columns than A.

For completeness we define a negative module as a module M such that
X(M") ¢ 0 for all quotients M" of M. It is not hard to see that there is a duality

= anti-equivalence) between the category of all negative left R-modules and the

category of all positive right R-modules such that HomR(M,R) = 0 (the bound modules),
for any fir, or more generally, any semifir (cf. [3]). A module is said to be
prime if M is either positive and X(M') > 0 for any non-zero submodule M', or
negative and X(M") < 0 for any non-zero quotient M". As an example of a prime
module of characteristic | we can take the semifir R itself. Now we have

Proposition | (cf. [4]). 1f R is a semifir and M, N are prime R-modules of

characteristic |, then any non-zero homomorphism f: M > N is injective.

Proof. We have the exact sequence
f
0> ker f > M+ N> coker f =+ 0.
If ker f # 0, then X(ker f) > 0, so X(coker f) > 0, X(im f) = | - X(coker f) g O,
hence im f = O.
From the Proposition we easily obtain the

Corollary. If M is a prime module of characteristic | over a semifir, then EndR(M)

is an integral damain.

Let me outline, following G.M. Bergman [1], how Prop. | can be used to show
the existence of a field of fractions for a fir. Consider all the prime left
R-modules of characteristic | extending R. They form a category which is a partial

ordering: two homomorphisms M + N agreeing on R must be equal, by Prop. I. The



category M — > N

R
is directed since we can form pushouts (it is at this point that one needs firs
rather than semifirs). Let L be the direct limit, then EndR(L) contains R (via

right multiplications), and it is a skew field, because the set of all endomorphisms

is transitive on non-zero points.

3. We now examine what assumptions on the ring are really needed in the
preceding development. To begin with, let R be any ring, RP the class of all
finitely generated projective left R-modules and KO(R) the projective module group,
with generators [P], for P ¢ gP» and defining relations [Pa0]=10[rP]+[0]. As
is well known (and easily seen), each element of KO(R) has the form [P] - [Q]

and [P] - [0] = [P'] - [Q'] if and only if

(2) P®&Q' 8T _P' ®#0Q8&T for same T ¢ PP'

Here we may of course replace T by R,

We define a partial preorder, the natural preorder on KO(R) by putting

(3) [P] - [Q] > O whenever [P] = [Q] + [S] for same S € RP-

Qur first concern is to know when this is a partial order:

Proposition 2. The natural preorder on KO(R) is a partial order if and only if

(4) SeT &R ZR 35 @ RN R,

For we have a partial order if and only if [P] 3 [Q] > [P] implies
[Pl = [0], i.e. [S]1g 0=>[s] =0, and this is just (4).

We recall that a ring R is said to be weakly finite if for any square matrices



of the same size, AB = | 2 BA = |, or equivalently, P @ R"=r"9yp=0
(other names: Rn for all n, is v. Neumann finite, directly finite, inverse

symmetric). It is clear that in a weakly finite ring (4) holds, so we have

Theorem |. In any weakly finite ring R the natural preorder on KO(R) is a

partial order and [P] =0 PP = 0.

To define torsion modules we have to limit ourselves to modules with a
finite resolution. Let us call a module M finitely resolvable if it has a finite

resolution by finitely generated projective R-modules:

(5) 0+ P +eee>P >P >M>0, (P e P).
n | 0 ! R

Write éﬁ for the class of all such M. Given two finite resolutions of M, say (5) and
(6) 0+Q =+ eee>p >Q >M=>0,
n | 0

(without loss of generality both are of the same length, we have by the extended

Schanuel-lemma (cf. [6], p. 137)
P BQ 8P 8-+ 0 6P & B oo
0% 2 - 9% 29

Hence the alternating sums for the sequences (5) and (6) define the same element

of KO(R) and we can define the characteristic of M by the formula
(7) X(M) = Z(—I)I[Pr].

Starting from any resolution (5) of M, we can modify P',°'-,P | so that they
n-
becane free of finite rank. |f in this case the last module Pn is also free, M

is said to have a finite free resolution. Clearly when this is so, we have

X(M) = n[R] for some n € Z (this holds more generally whenever the last term Pn
in the above resolution is stably free).
It is easily seen (and well known) that X(M) is additive on short exact

sequences: Given a short exact sequence



0+ M >M->M'"~>0,

if two of M, M', M" are in RE; then so is the third, and we have
X(M) = X(M') + x(M"),
We can now define for any M € RE:

. M is positive if X(M'") > 0 for all submodules M' of M in PP.

2. M is negative if X(M") ¢ O for all quotients M" of M In RE'

3. M is a torsion module if it is both positive and negative.

4. M is prime if either M is positive and X(M') > O for non zero submodules M'
or M is negative and X(M") < O for non-zero quotients M".

Now it is clear that Prop. | holds for any projective free ring (i.e. a ring
over which every finitely generated projective module is free, of unique rank).
More generally, a similar result will hold for any ring with a minimal positive
projective module.

As in the case of semifirs (cf. [2], Th. 5.3.3, p. 185) one now has

Theorem 2. For any weakly finite ring R the torsion modules form an abelian

category T which is a full subcategory of R-Mod.

The proof follows closely the semifir case, using the natural ordering in
KO(R), and the following criterion (cf. [2], Prop. A.3, p. 321. | am obliged to
C.M. Ringel for drawing my attention to an omission in the enunciation, which is

rectified below).

Let A be an abelian category and B a full subcategory; then B is abelian

if and only if it has finite direct sums and the kernel and cokernel (taken in A)

of any map in B lie again in B.

4. Over a commutative Noetherian ring every torsion module is annihilated
by a non-zero divisor (Auslander-Buchsbaum theorem, cf. [6], p. 140). This is
certainly no longer true in general, e.g. R/xR, where R = k<x,y>, is a torsion

modu le whose annihilator is 0, but it may well extend to non-commutative Noetherian



domains.

When we cane to look at general (weakly finite) rings, one difficulty is the
paucity of prime modules. We saw that for a semifir R, R itself is prime. Below
we examine another, wider, class of rings for which this is tfrue.

We recall that for any matrix A (over any ring) the inner rank of A, rk A,
is defined as the least r such that A = PQ, where P has r columns. Now Dicks

and Sontag [5] have defined a Sylvester domain as a ring R such that

(8) Amxr,Brxn, AB=0=>rkA+ rkBgr.

The reason for the name is that (8) is a special case of Sylvester's law of

nul lity:
(9) rk A+ rk Bgr + rk AB,

for Amxr, Br xn. Conversely, we can deduce Sylvester's law (9) from (8).
For if AB in (8) has inner rank s, say AB = CD, where D has s fows, then

(A,C) <Ls>== 0, hence rk A+ rk Bg r + s, i.e. (9). Any Sylvester domain has a
universal field of fractions inverting all full matrices, in fact this property
can be used to characterize them; thus Sylvester domains include semifirs.
Further, any Sylvester domain is projective free, of weak global dimension at
most 2. For an Ore domain the converse holds: any projective free Ore domain
of weak global dimension at most 2 is a Sylvester domain. E.g. k[x,y] is a

Sylvester domain, but not k[x,y,z].

Proposition 3. For any coherent Sylvester domain R, R is a prime module.

Proof. We must show that for every finitely presented non-zero left ideal a of
R, X(a) > 0.

Let a be generated by c',"-,cn and take a resolution

(0
(10) 0> F—+>R"+3a~> 0.



We note that w.dim(R/a) ¢ 2, hence w.dim(a) ¢ |, so the first term F in (10) is
flat; by coherence it is finitely generated, hence finitely presented, therefore
projective, and so free (because R is projective free). |If o has a matrix

A= aiJ), then Ac = 0, where ¢ = (c ,---,cn)T = 0, hence rk A + rk ¢ n, but
rkc21l, sork Ag n- 1. Thus A= PQ, where P ismx p, Q is p x n and
pgn-=-1. It follows that PQc = 0 and rk P = p = rk Q, and rk P + rk Qc ¢ p,

hence Qc = 0. Moreover, Qx = 0 implies Ax = 0, hence we have a presentation of

a by Q instead of A and X(@a) = n -p > I.

5. It looks at first sight as if much of the theory of semifirs carries over
to Sylvester domains, but we run into difficulties as soon as we consider the
factorization (of elements or matrices) over Sylvester domains. To make a beginning
let us see how the factorization theory of semifirs treated in Ch. 5 of [2] extends
to rectangular matrices. In Ch. 5 of [2] there is a factorization theory for square
matrices over semifirs, but nothing beyond a few remarks (on p. 202f.) about
rectangular matrices.

Let R be any ring, then any matrix A € MR" defines a module M:
crn R > RN > M~ 0,

where the map a has matrix A, and A is determined by M if and only if xA =0 =>x =0,
i.e. A is a right non-zerodivisor. We remark that A is a left non-zerodivisor If

and only if M* = HomR(M,R) =0, i.e. M is a bound module. We also note that M = 0

if and only if A has a left inverse.

When R is a semifir, every finitely presented module M is defined by a right
non-zerodivisor matrix A, i.e. a in (Il) is then injective. In that case X(M) = n - m;
we shall also call n - m the characteristic of the matrix A: char A= n - m.

Two matrices A, A! definevisomorphic modules if and only if they are stably

/ /
associated, i.e.& "o = U{ § ° V for invertible matrices U, V (where the unit
0o 1/

\ 0 |
matrices need not be of the same size.) Conversely, every matrix A which is a right



non-zerodivisor defines a left module M, and a matrix product C = AB corresponds

to a short exact sequence
0+M'>M~>M"> O,

where A, B, C define M', M", M respectively. More generally, if we consider all
factorizations of a full matrix C, there is a correspondence between the left and

right factors, the factorial duality (cf. [2], p. 119), which means for example,

that an integral domain which satisfies the ascending chain condition on principal
right ideals (right ACCl for short), also satisfies the descending chain condition

on principal left ideals conftaining a given non-zero left ideal. We recall that a

fir satisfies right ACCn, i.e. ACC on n-generator right ideals, for any n ([2], p. 49).
by an atom in a ring we mean a non-unit which cannot be written as a product of

two non-units. Now the factorization theorem for firs may be stated as follows:

Theorem (cf. [2], p. 201). In an n x n matrix ring over a fir every full matrix

can be written as a product of atoms, and given two factorizations into atoms:

(12) C=A e=s¢p =B @se B

| r | s!
we have r = s and there is a permutation i - i' such that Ai is stably associated
'f_OBiv'

Here all fthe matrices are n x n over the ground ring, for some fixed n. We
are interested in the generalization to the case where the A's and B's are not nec-
essarily square and even C need not be square. For this purpose we have to examine
more closely the steps by which one passes from one factorization of C in (12) fo

another.

We recall that a relation between matrices

(13) AB' = BA'



BY
is called canaximal if (A,B) has a right inverse and| A a left inverse. Let

Aberxm, Brxn, A' nx s and B' m x s, then by the law of nullity in semifirs,

(14) r+se¢m+n.

If equality holds in (14), so that char A = char A' =m - r, char B = char B' =n -r,
we call (13) a proper comaximal relation. Thus for any comaximal relation

C = AB' = BA' over a semifir we have

char C & char A + char B,

with equality if and only if the relation is proper. Now one has

Lemma | ([4], Prop. 2.2). Two matrices A, A' over a weakly finite ring R are

stably associated if and only if there is a proper comaximal relation (13) for

A, A'.

If in some factorization a product AB' is replaced by BA', where AB' = BA'

is a (proper) comaximal relation, we shall call the change a (proper) comaximal

transposition. This extends the usage in [2], p. 134,

Now we have

mpn

Theorem 3 (Refinement theorem). Let R be a semifir and C € "R", then any two

factorizations of C have refinements which can be obtained from each other by

comaximal transpositions.

The proof, which is quite straightforward, is analogous to the corresponding
refinement theorem for factorizations into square matrices. However, this theorem
does not seem to be in the best possible form in that we cannot always choose the
comaximal transpositions to be proper. This happens (roughly speaking) when C is
too narrow in shape, i.e. of large positive or negative characteristic. |[If we
translate this into module language we find that comaximal relations correspond to
sums and intersections, but when the relation is improper, the intersection contains

a free summand.
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In order to state a factorization theorem we need to find an analog of atoms
for rectangular matrices. Let us call a matrix factorization C = AB proper if A
has no right inverse and B no left inverse. |f C is neither a unit nor a zero-
divisor and has no proper factorizations, then we call it unfactorable.

It is easily seen that a matrix C has a proper factorization if and only if
the module M defined by it has a proper non-zero bound submodule. This leads to
the following description of the modules defined by unfactorable matrices:

Proposition 4. Let R be a semifir, then a finitely presented R-module M has an

unfactorable matrix if and only if every proper finitely generated submodule of

M is free.
Proof. Suppose that M has a proper bound submodule M' ¥ 0, then M' is clearly
not free. Conversely, if M' is a non-free proper submodule of M, either M' is
bound and we have a proper factorization, or M'¥ # 0, so there is a non-zero
hamomorphism F:M' +~ R. Its image (finitely generated as image of M') is free,
as submodule of R, and hence splits off M': M' = F & M;. By induction on the
number of generators M; has a bound non-zero submodule and the result follows.
Sometimes a module M is called almost free if M is not free, but every proper
finitely generated submodule is free. Thus unfactorable matrices correspond to
almost free modules. However, we shall not pursue the module aspect here further.
To prove the factorization theorem we isolate the essential step in the
follow g basic lemma:

Lemma 2. Let R be a semifir and C any matrix over R. Given

C = AB' = BA',

where A is unfactorable and BA' is a proper factorization, either there exists a

matrix U such that B = AU, B' = UA', or there is a comaximal relation ABI = BA|

such that A' = A]Q, B' = BIQ, for some matrix Q.

The proof is quite similar to the corresponding result for elements



1"

([2], p. 124f.). With the help of this lemma we obtain

Theorem 4 (Factorization theorem). Let R be a fir, then every matrix C over R

which is a non-zerodivisor has a proper factorization into unfactorables, and

given any two such factorizations of C, we can pass from one to the ofther by a

series of comaximal franspositions.

The existence of factorizations was proved in [2], Th. 5.6.5, p. 202, and

the uniqueness follows by repeated application of Lemma 2.
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