Lecture Notes in

Computer Science

~ Edited by G. Goos and J. Hartmanis

197

Y. Wallach |

Alternating

Sequential/Parallel
Processing

Springer-Verlag
Berlin Heidelberg New York

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

127

Y. Wallach

Alternating
Sequential/Parallel
Processing

Springer-Verlag
Berlin Heidelberg New York 1982

Editorial Board
W. Brauer P.Brinch Hansen D. Gries C. Moler G. Seegmilller
J. Stoer N. Wirth

Autor

Y. Wallach

Wayne State University, College of Engineering
Department of Electrical and Computer Engineering
Detroit, Michigan 48202, USA

CR Subject Classifications (1981): 6.2, 5.25, 5.29

ISBN 3-540-11194-8 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-11194-8 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidelberg 1982

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

2145/3140-543210

Lecture Notes in Computer Science

Vol. 23: Programming Methodology. 4th Informatik Symposium,
IBM Germany Wildbad, September 26-27, 1974. Edited by C. E.
Hackl. VI, 501 pages. 1975.

Vol. 24: Parallel Processing. Proceedings 1974. Edited by T. Feng.
VI, 433 pages. 1975.

Vol. 25: Category Theory Applied to Computation and Control. Pro-
ceedings 1974. Edited by E. G. Manes. X, 245 pages. 1975.

Vol. 26: GI-4. Jahrestagung, Berlin, 9.-12. Oktober 1974. Her-
ausgegeben im Auftrag der Gl von D. Siefkes. IX, 748 Seiten.
1975.

Vol. 27: Optimization Techniques. IFIP Technical Conference.
Novosibirsk, July 1-7, 1974. (Series: |.F.LP. TC7 Optimization
Conferences.) Edited by G. |. Marchuk. VIIl, 507 pages. 1975.

Vol. 28: Mathematical Foundations of Computer Science. 3rd
Symposium at Jadwisin near Warsaw, June 17-22, 1974 Edited
by A. Blikle. VIl, 484 pages. 1975.

Vol. 29: Interval Mathematics. Procedings 1975. Edited by K. Nickel-

VI, 331 pages. 1975.

Vol. 30: Software Engineering. An Advanced Course. Edited by
F. L. Bauer. (Formerly published 1973 as Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 81) XlI, 545 pages. 1975.

Vol. 31: S. H. Fuller, Analysis of Drum and Disk Storage Units. IX,
283 pages. 1975.

Vol. 32: Mathematical Foundations of Computer Science 1975.
Proceedings 1975. Edited by J. Betvar. X, 476 pages. 1975.

Vol. 33: Automata Theory and Formal Languages, Kaiserslautern,
May 20-23, 1975. Edited by H. Brakhage on behalf of Gl. Vil
292 Seiten. 1975.

Vol. 34: Gl - 5. Jahrestagung, Dortmund 8.-10. Oktober 1975.
Herausgegeben im Auftrag der Gl ven J. Mihlbacher. X, 755 Seiten.
1975.

Vol. 35: W. Everling, Exercises in Computer Systems Analysis.
(Formerly published 1972 as Lecture Notes in Economics and
Mathematical Systems, Vol. 65) VIIl, 184 pages. 1975.

Vol. 36: S. A. Greibach, Theory of Program Structures: Schemes,
Semantics, Verification. XV, 364 pages. 1975.

Vol. 37: C. Bohm, i-Calculus and Computer Science Theory. Pro-
ceedings 1975. XIl, 370 pages. 1975.

Vol. 38: P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille,
M. Vanbegin. An Optimized Translation Process and Its Application
to ALGOL 68. IX, 334 pages. 1976.

Vol. 39: Data Base Systems. Proceedings 1975. Edited by H. Hassel-
meier and W. Spruth. VI, 386 pages. 1976.

Vol. 40: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 1. Proceedings 1975. Edited by J. Cea. XIV,
854 pages. 1976.

Vol. 41: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 2. Proceedings 1975. Edited by J. Cea. XIll,
852 pages. 1976.

Vol. 42: James E. Donahue, Complementary Definitions of Pro-
gramming Language Semantics. VIl, 172 pages. 1976.

Vol. 43: E. Specker und V. Strassen, Komplexitat von Entscheidungs-
problemen. Ein Seminar. V, 217 Seiten. 1976.

Vol. 44: ECI Conference 1976. Proceedings 1976. Edited by K.
Samelson. VIIl, 322 pages. 1976.

Vol. 45: Mathematical Foundations of Computer Science 1976.
Proceedings 1976. Edited by A. Mazurkiewicz. XI, 601 pages. 1976.

Vol. 46: Language Hierarchies and Interfaces. Edited by F. L. Bauer
and K. Samelson. X, 428 pages. 1976.

Vol. 47: Methods of Algorithmic Language Implementation. Edited
by A. Ershov and C. H. A. Koster. VIII, 351 pages. 1977.

Vol. 48: Theoretical Computer Science, Darmstadt, March 1977.
Edited by H. Tzschach, H. Waldschmidt and H. K.-G. Walter on
behalf of Gl. VI, 418 pages. 1977.

Vol. 49: Interactive Systems. Proceedings 1976. Edited by A. Blaser
and C. Hackl. VI, 380 pages. 1976.

Vol. 50: A. C. Hartmann, A Concurrent Pascal Compiler for Mini-
computers. VI, 119 pages. 1977.

Vol. 51: B. S. Garbow, Matrix Eigensystem Routines - Eispack
Guide Extension. VIIl, 343 pages. 1977.

Vol.52: Automata, Languages and Prograrnmmg'. Fourth Colloquium,
University of Turku, July 1977. Edited by A. Salomaa and M. Steinby.
X, 569 pages. 1977.

Vol. 563: Mathematical Foundations of Computer Science. Proceed-
ings 1977. Edited by J. Gruska. XIl, 608 pages. 1977.

Vol. 54: Design and Implementation of Programming Languages.
Proceedings 1976. Edited by J. H. Williams and D. A. Fisher. X,
496 pages. 1977.

Vol. 65: A. Gerbier, Mes premiéres constructions de programmes.
XIl, 256 pages. 1977.

Vol. 56: Fundamentals of Computation Theory. Proceedings 1977.
Edited by M. Karpinski. XIl, 542 pages. 1977.

Vol. 57: Portability of Numerical Software. Proceedings 1976. Edited
by W. Cowell. VIIl, 539 pages. 1977.

Voi. 58: M. J. O'Donnell, Computing in Systems Described by Equa-
tions. XIV, 111 pages. 1977.

Vol. 59: E. Hill, Jr., A Comparative Study of Very Large Data Bases.
X, 140 pages. 1978.

Vol.60: Operating Systems, An Advanced Course. Edited by R. Bayer,
R. M. Graham, and G. Seegmiiller. X, 593 pages. 1978.

Vol. 61: The Vienna Development Method: The Meta-Language.
Edited by D. Bjerner and C. B. Jones. XVIII, 382 pages. 1978.

Vol. 62: Automata, Languages and Programming. Proceedings 1978.
Edited by G. Ausiello and C. Bshm. VIll, 508 pages. 1978.

Vol. 63: Natural Language Communication with Computers. Edited
by Leonard Bolc. VI, 292 pages. 1978.

Vol. 64: Mathematical Foundations of Computer Science. Proceed-
ings 1978. Edited by J. Winkowski. X, 551 pages. 1978.

Vol. 65: Information Systems Methodology, Proceedings, 1978.
Edited by G. Bracchi and P. C. Lockemann. XIl, 696 pages. 1978.

Vol. 66: N. D. Jones and S. S. Muchnick, TEMPO: A Unified Treat-
ment of Binding Time and Parameter Passing Concepts in Pro-
gramming Languages. IX, 118 pages. 1978.

Vol. 67: Theoretical Computer Science, 4th Gl Conference, Aachen,
March 1979. Edited by K. Weihrauch. VII, 324 pages. 1979.

Vol. 68: D. Harel, First-Order Dynamic Logic. X, 133 pages. 1979.

Vol. 689: Program Construction. International Summer School. Edited
by F. L. Bauer and M. Broy. VIl, 651 pages. 1979.

Vol. 70: Semantics of Concurrent Computation. Proceedings 1979.
Edited by G. Kahn. VI, 368 pages. 1979.

Vol. 71: Automata, Languages and Programming. Proceedings 1979.
Edited by H. A. Maurer. IX, 684 pages. 1979.

Vol. 72: Symbolic and Algebraic Computation. Proceedings 1979.
Edited by E. W. Ng. XV, 557 pages. 1979.

Vol. 73: Graph-Grammars and Their Application to Computer
Science and Biology. Proceedings 1978. Edited by V. Claus, H. Ehrig
and G. Rozenberg. VIl, 477 pages. 1979.

Vol. 74: Mathematical Foundations of Computer Science. Proceed-
ings 1979. Edited by J. Betvat. IX, 580 pages. 1979.

Vol. 75: Mathematical Studies of Information Processing. Pro-
ceedings 1978. Edited by E. K. Blum, M. Paul and S. Takasu. VIII,
629 pages. 1979.

Vol. 76: Codes for Boundary-Value Problems in Ordinary Differential
Equations. Proceedings 1978. Edited by B. Childs et al. VI, 388
pages. 1979.

FOREWORD

The fields of "parallel processing" and "complexity theory" have drawn the at-
tention of researchers for the last 20-30 years. 1In essence, the idea is that
speeding up computations by building ever faster computers will eithee stop or will
not be very profitable. What can then be more natural than connecting computers in
parallel? With p processors, we might get slightly less than a p-fold increase in
speed, but an increase we will certainly get.

Still, after all Lhese years and a large body of excellent results, parallel
processing has not triumphed. A researcher working for a computer manufacturer even
told me that '"parallel processing will never work." What are the reasons for such
pessimism?

(1) The first is that those systems which were built were applied to what I
call "inherently parallel" problems. Thus, PEPE tracks a number of targets; each
processor has a single target assigned to it on which it works independently of and
concurrently with other processors. Payroll processing may be another example of an
inherently parallel problem; there is no connection between my salary and that of
my boss, so they can be processed independently.

Invariably, the question was asked how many such problems exist. A look at any
book on numerical analysis was rather disappointing: very few algorithms were any-
thing but purely sequential. Whether our minds work so that we do not do "B" until
having finished "A", or we are taught to solve problems that way, is immaterial.
The fact remains that few problems seem to be inherently parallel.

(2) Mathematicians have the habit that if they cannot have the computer they
need, they define a theoretical model and leave the worry of builc¢ing it to engi-
neers. Unfortunately, the abstract system so defined suffered from not being prae-
tical. Let me give examples of what I mean.

- The model assumes that all p processors are connected to a large, common mem-
ory. Whenever two or more processors requested the same word from it, they would
get if instantaneously. This is clearly not achievable and leads to strange be-
haviors: one system apparently slowed down with the addition of processors.

- The number of processors was to be unbounded. It had better be so, since,
as shown in one example of this book, multiplying two (nxn) matrices, requires w3
processors. A rather '"lean" matrix of n=100 would thus require a million proces-
sors.

(3) One of the first parallel systems built, the Illiac, has "private memor-
ies" for the "slaves." Unfortunately, the connections are such that quite often
only one of the 64 "slaves" or only the single master works - the rest are idle.
This is the case of "sequentialization" and attempts to reduce it were not always
crowned with success.

(4) A rather important objective of parallelization was that of reliability

v

and availability. The first is defined here as the ability to identify a faulty
unit and amputate it, the second as the capability to proceed working despite this
removal. Illiac and similar systems have neither: if a unit fails, it must be ex-
changed or repaired before the system can work again.

This book is going to suggest a solution to this dilemma based on a single
observation:

Problems are neither inherently parallel nor completely sequential. Solutions
should adapt themselves to this fact rather than fighting it.

Take it in another way. When you are walking, the mind directs the movement of
your legs and hands changing from time to time the pace, direction, etc. The mind
works sequentially, the legs and hands are mostly independent and you would like to
minimize the movements or time. In computerese: Assemble a master/slaves systems
such that the master directs sequentialily the slaves which then work in parallel,
rather independently on different data (stones or meadows) .

The first part of the book (Chapters 1 to 4) will develop a hardware system
called ASP for "Alternating Sequential/Parallel" which, as its name implies, adapts
well to the central idea, is more than just a model (one system is commercially
available, another is being assembled), includes "private memories" and should have
high reliability/availability because of symmetry. The second part (Chapters 5 to
11) develops algorithms and programs for it. For each of these programs, the speed-
up was calculated; they all approach more or less the optimum.

The development of these algorithms was so easy that the thought occurred to me
that something must be wrong. On second thought, I concluded that this was only
natural since the following comparison, with other approaches holds: instead of
trying to eliminate completely the sequential parts of a solution we try only to
minimize it. The first is not always possible, but in the second case the amount of
minimization reflects only the author's ingenuity; I am sure readers will improve on
some or all algorithms proposed by me. They might also add to the general approach-
es developed: 'vertical programming" and "block schemes" as well as '"tearing,"
"chasing" and the like.

The problems chosen are all in numerical, linear algebra because, as once ob-
served, 75% of all scientific problems lead to linear equations. Since most work
on other parallel systems also centered on linear algébra, a comparison of effi-
ciency, speedup etc. between them and the ASP-methods is possible.

This is really a research report. Therefore the work of and on other systems
is only briefly sketched - as much as needed for the comparison. Additionally,
since the field of numerical solutions to linear algebra problems is very well
covered in literature, it also is only sketched - wherever needed for developing
ASP-algorithms. The reader is referred to the book by Young [Yo 71] for iterative
methods and to the books by Young and Gregory [YG] and by Stoer and Bullirsch [SB]

for all the rest. Especially the last is warmly recommended and 1 assume that the

\%

reader knows the relevant material so that nc repetition is needed.

Let me close with additional remarks:

(1) The numbering is according to sections. Thus, equation (15) in section
2 of chapter 5 is referred to as (15) throughout chapter 5, but as 5.2.15 in other
chapters.

(2) The book can be used for two graduate courses. The first part on the
model (architecture) of parallel systems would have to be expanded early - each sec-
tion of chapters-2 and 4 could (and probably should) be expanded into a separate
chapter. The second part (chapters 5 to 9) could also be expanded - especially on
the use of other (non-ASP) languages and algorithms.

(3) Instead of having a motto for every chapter, I offer two here:

"Nothing will ever be attempted if all possible objections muslL be firslL ovec-
come" .

"Science seeks the truth, eangineering - the compromise." The first, by Samuel
Johnson explains why I have had the audacity to offer a new solution at all. The
second, by me, explains why it had to be a compromise solution: I am an engineer,
not a mathematician. I will also be only too happy if readers will point out to me
mistakes. On the whole, I hope they find the approach to be new but correct and
simple.

A large part of chapters 6, 7 and 8 is from the Ph.D. Thesis and the papers
which Dr. Conrad published with me. I very much thank him for his cooperation.

Thanks go also to Dr. B.Z. Barta, Prof. K.S. Fu, Prof. W. Handler, Dr. O,
Herzog, Prof. M. Schlesinger, Mr. A. Shimor, Mr. J. Tenenbaum and Mr. B. Waumans -
they all read and made remarks to the manuscript. Finally, I would like to thank my
students who had to endure constant changes of text throughout the last eight years.
I am afraid that constant rewriting has introduced more errors than is usual - for
which I ask the readers forgiveness. The main points he should gather from this
book are:

- ASP is a new hardware unlike other models

- Because ASP drops the requirement of complete parallelization, it is easy to
develop new and efficient algorithms. I would be glad to hear from readers who have

done it in their field of work.

Acronyms

NOTATION

are used frequently in the text, but may be forgottea as soon as the

particular Section is completed, except for the following:

Apps = Abstract pps

pps = parallel processing systems (nonsingular-pp's)
Kopps, Mopps and Topps = Korn's, Multibus and Tristate oriented pps resp.
ASP = Alternating Sequential/Parallel system

EPOC = Electric Power Control

Poof = Parallel, optimally ordered factorization
SIMD = Single-instruction, Multiple-data system

MIMD = Multiple-imnstruction, Multiple-data system
PEPE = Parallel Ensemble of Processing Elements

SMS = Siemens' Multiprocessing System

cu = Control unit

PE = Processing element

ME = Memory element

We will use capital underlined letters for matrices, lower-case underlined for

vectors, lower case and Greek letters for scalars. In particular we use:

Matrices Vectors Scalars
c = no. of nonzero terms

A - general b-Ax=b d = density (c/n)
B - optimization ¢ - control e = error
C - general f - function f = function
D - diagonal g - gradient h = slice width
E - error h - constraints m = number of memories
F - Frobenius r - residual n = dimension
G - Givens' s - state, speedup p = number of slaves
H - Householder's X,z - general vectors q = index of slave
I - Iteration r = residual
J - Jacobian t = time
L - lower (left part of A) w = overrelaxation factor
M - symmetric o,M,T,B,Y are times of
0 - zero addition/subtraction,
P - permutation multiplication/division,
Q - orthonormal transfer, synchroniza-
R - right (upper part of A) tion and square root
S - similarity taking respectively.
T - tridiagonal A = eigenvalue
a .= i-th column of Aj; a, = i-th row of A w=o+p

L s o= . Q = number of operations
a5 = (i,j)-th element of A b = (time) ratig
a*b = scalar product n= eff1flen§y
“I = transpose of A v = utilization
a = o = speedup

Additional letters are used, but being local (to a few pages) may be forgotten

as soon as you finish reading.

Springer-Verlag would like to thank the following publishers for gran-
ting permission to quote from the following original papers:

I.E.E.E.

Barnes et al:"The Illiac-IV Computer",Trans.IEEE,Vol.C-17,No8,746-760.

Davis:"The Illiac-IV Processing Element",Trans.IEEE,Vol.C-18,No9,800-
816, 1969.

Gilmore:"Matrix Computations on an Associative Processor",Proc.Sagamo-
re Conference, 272-290, 1974.

Wallach:"Parallel Processor Systems in Power-Dispatch'",IEEE-Summer
Power Meeting,July 74,Papers 74334-9 and C74355-6.

Batcher:"Staran/Radcap Hardware Architecture" and "The flip-network in
Staran", Sagamore Conference, 147-152 and 65-71 respectively.

Conrad,Wallach:"Parallel,Optimally Ordered Factorization",PICA-Conf.
(IEEE),May 1977, 302-306.

Kuck:"I1lliac-IV Software and Application Programming",Trans.IEEE, Vol.
c-17,758-770,1968.

Wing,luang:"A parallel triangularization process of sparse matrices'",
Proc.International Conf.on Parallel Processing,August, 1977

Conrad,Wallach:"Iterative solutions of linear equations on a parallel
processing system",Trans.IEEE,Vol.C-26,N0o2,1977,838-847.

Conrad,Wallach:"On block-parallel methods for solving linear equations
Trans.IEEE,Vo0l.C-29,N05,354-359,1980.

Leven,Wallach,Conrad:"Mathematical programming methods for power dis-
patch",PICA—Conf.(IEEE—CH1317—3/79),1979, 137-141.

Feng:"Some characteristics of Associative/Parallel Processing'", Proc.
Sagamore Conf,1972, 5-16.

Evensen,Troy:"Introduction to the architecture of a 288-element PEPE"
Sagamore Conf,1973, 162-169.

Shimor,Wallach:"A multibus-oriented parallel processing system-Mopps"

Trans.IEEE,Vol.IECI-25,N0.2,1978,137-142,

North-Holland Publ.Co.

Kober,Kopp,Kuznia:'"SMS 101...",EuromicroJournal,1976,56-64.

Kober:"A fast communication processor for the SMS Multimicroproc-ssor
System",Euromdcro-Journal,1976,183-189.

Kober,Kuznia:"SMS-A Multiprocessor Architecture for High-Speed Numeri
cal Calculations", Euromicro-Journal,Vol.5,1979,48-52.

Nagel:"Solving Linear Equations with the SMS 201" ,Euromicro-Journal ,

1979,Vol.5, 53-54.

\l

Tomann,Liedl:"Reliability in Microcomputer Arrays",Euromicr-Journal ,
1980.

Wallach,Leven:"Alternating Sequential/Parallel Versions of the Simplex
Algorithm", Euromicro-Journal, Vol.6,1980,237-242.

Richter,Wallach:"Remarks on a real-time,master-slaves operating system

Microprocessing and Microprogramming, Vol.7,1981.

Pergammon Infotech

‘Infotech State of the Art Report "Multiprocessor Systems", Pergamon

Infotech Limited, Maidenhead UK (1976)

Simulation Councils, Inc.

Korn:"Back to Parallel Computation", Simulation, August 74.

Technical Publishing Company, A Dun&Bradsteet Company

McIntire:"An Introduction to the Illiac-IV Computer",Datamation,

April,1970.

Vol. 77: G. V. Bochmann, Architecture of Distributed Computer
Systems. VIII, 238 pages. 1979.

Vol. 78: M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF.
VIII, 159 pages. 1979.

Vol. 79: Language Design and Programming Methodology. Pro-
ceedings, 1979. Edited by J. Tobias. IX, 255 pages. 1980.

Vol. 80: Pictorial Information Systems. Edited by S. K. Chang and
K. S. Fu. X, 445 pages. 1980.

Vol. 81: Data Base Techniques for Pictorial Applications. Proceed-
ings, 1979. Edited by A. Blaser. XI, 599 pages. 1980.

Vol. 82: J. G. Sanderson, A Relational Theory of Computing. VI,
147 pages. 1980.

Vol. 83: International Symposium Programming. Proceedings, 1980.
Edited by B. Robinet. VI, 341 pages. 1980.

Vol. 84: Net Theory and Applications. Proceedings, 1979. Edited
by W. Brauer. XlIl, 537 Seiten. 1980.

Vol. 85: Automata, Languages and Programming. Proceedings, 1980.
Edited by J. de Bakker and J. van Leeuwen. VIll, 671 pages. 1980.

Vol. 86: Abstract Software Specifications. Proceedings, 1979. Edited
by D. Bjerner. XIll, 567 pages. 1980

Vol. 87: 5th Conference on Automated Deduction. Proceedings,
1980. Edited by W. Bibel and R. Kowalski. VII, 385 pages. 1980.

Vol. 88: Mathematical Foundations of Computer Science 1980.
Proceedings, 1980. Edited by P. Dembinski. VIIl, 723 pages. 1980.

Vol. 89: Computer Aided Design - Modelling, Systems Engineering,
CAD-Systems. Proceedings, 1980. Edited by J. Encarnacao. XIV,
461 pages. 1980.

Vol. 90: D. M. Sandford, Using Sophisticated Models in Reso-
lution Theorem Proving.
Xl, 239 pages. 1980

Vol. 91: D. Wood, Grammar and L Forms: An Introduction. IX, 314
pages. 1980.

Vol. 92: R. Milner, A Calculus of Communication Systems. VI, 171
pages. 1980.

Vol. 93: A. Nijholt, Context-Free Grammars: Covers, Normal Forms,
and Parsing. VI, 253 pages. 1980.

Vol. 94: Semantics-Directed Compiler Generation. Proceedings,
1980. Edited by N. D. Jones. V, 489 pages. 1980.

Vol. 95: Ch. D. Marlin, Coroutines. XIl, 246 pages. 1980.

Vol. 96: J. L. Peterson, Computer Programs for Spelling Correction
VI, 213 pages. 1980.

Vol. 97: S. Osaki and T. Nishio, Reliability Evaluation of Some Fault-
Tolerant Computer Architectures. VI, 129 pages. 1980.

Vol. 98: Towards a Formal Description of Ada. Edited by D. Bjerner
and O. N. Oest. XIV, 630 pages. 1980.

Vol. 99: I. Guessarian, Algebraic Semantics. XI, 158 pages. 1981.

Vol. 100: Graphtheoretic Concepts in Computer Science. Edited by
H. Noltemeier. X, 403 pages. 1981.

Vol. 101: A. Thayse, Boolean Calculus of Differences. VIl, 144 pages.
1981.

Vol. 102: J. H. Davenport, On the Integration of Algebraic Functions.
1-197 pages. 1981.

Vol. 103: H. Ledgard, A. Singer, J. Whiteside, Directions in Human
Factors of Interactive Systems. VI, 190 pages. 1981.

Vol. 104: Theoretical Computer Science. Ed. by P. Deussen. VII,
261 pages. 1981.

Vol.105: B.W. Lampson, M. Paul, H. J. Siegert, Distributed Systems -
Architecture and Implementation. XIIl, 510 pages. 1981.

Vol. 106: The Programming Language Ada. Reference Manual. X,
243 pages. 1981.

Vol. 107: International Colloquium on Formalization of Programming
Concepts. Proceedings. Edited by J. Diaz and |. Ramos. VII, 478
pages. 1981.

Vol. 108: Graph Theory and Algorithms. Edited by N. Saito and
T. Nishizeki. VI, 216 pages. 1981.

Vol. 109: Digital Image Processing Systems. Edited by L. Bolc and
Zenon Kulpa. V, 353 pages. 1981.

Vol. 110: W. Dehning, H. Essig, S. Maass, The Adaptation of Virtual
Man-Computer Interfaces to User Requirements in Dialogs. X, 142
pages. 1981.

Vol. 111: CONPAR 81. Edited by W. Handler. XI, 508 pages. 1981.

Vol.112: CAAP'81. Proceedings. Edited by G. Astesianoand C. Bohm.
VI, 364 pages. 1981.

Vol. 113: E.-E. Doberkat, Stochastic Automata: Stability, Nondeter-
minism, and Prediction. IX, 135 pages. 1981.

Vol. 114: B. Liskov, CLU, Referenc® Manual. VIII, 190 pages. 1981.

Vol. 115: Automata, Languages and Programming. Edited by S. Even
and O. Kariv. VIIl, 552 pages. 1981.

Vol. 116: M. A. Casanova, The Concurrency Control Problem for
Database Systems. VIl, 175 pages. 1981.

Vol. 117: Fundamentals of Computation Theory. Proceedings, 1981.
Edited by F. Gécseg. XI, 471 pages. 1981.

Vol. 118: Mathematical Foundations of Computer Science 1981.
Proceedings, 1981. Edited by J. Gruska and M. Chytil. XI, 589 pages.
1981.

Vol. 119: G. Hirst, Anaphora in Natural Language Understanding:
A Survey. XIll, 128 pages. 1981.

Vol. 120: L. B. Rall, Automatic Differentiation: Techniques and Appli-
cations. VI, 165 pages. 1981.

Vol. 121: Z. Zlatev, J. Wasniewski, and K. Schaumburg, Y12M So-
lution of Large and Sparse Systems of Linear Algebraic Equations.
IX, 128 pages. 1981.

Vol. 122: Algorithms in Modern Mathematics and Computer Science.
Proceedings, 1979. Edited by A. P. Ershov and D. E. Knuth. XI, 487
pages. 1981.

Vol. 123: Trends in Information Processing Systems. Proceedings,
1981. Edited by A. J. W. Duijvestijn and P. C. Lockemann. XI, 349
pages. 1981.

Vol. 124: W. Polak, Compiler Specification and Verification. XlII,
269 pages. 1981.

Vol. 125: Logic of Programs. Proceedings, 1979. Edited by E.
Engeler. V, 245 pages. 1981.

Vol. 126: Microcomputer System Design. Proceedings, 1981. Edited
by M. J. Flynn, N. R. Harris, and D. P. McCarthy. VI, 397 pages. 1982.

Voll. 127: Y.Wallach, Alternating Sequential/Parallel Processing.
X, 329 pages. 1982.

CONTENTS

Page
INTRODUCTION
1.1 An overview 1
1.2 -Hardware classification 8
1.3 Problem classification 12
FUNCTIONAL DESCRIPTION OF SOME PARALLEL SYSTEMS
2.1 Pipelining 19
2.2 Apps, complexity and speedup 24
2.3 Interconnection networks 28
2.4 General-purpose multiprocessors 42
2.5 Tll¥ac-IV 47
2.6 Associative, SIMD-machines 55
2.7 Dedicated, on-line systems 61
2.8 Summary 66
ALTERNATING SEQUENTIAL/PARALLEL ASP-SYSTEMS
3.1 ASP and limits of its speedup 68
3.2 Korn's pps - the Kopps 79
3.3 SMS-systems 85
3.4 Mopps and Topps 92
3.5 Comparison 100
INTERFACE
4.1 Language problems 102
4.2 Matrix multiplication 112
4.3 The reliability aspect 122
4.4 Notes on operating system support 129
ON DIRECT SOLUTION METHODS OF Ax<b
5.1 Elimination 134
5.2 Additional direct methods 142

5.3 Complex numbers and guads 149

10.

DIRECT, PARALLEL AND ASP METHODS
6.1 Known, parallel methods

6.2 ASP-elimination

6.3 Sparsity

6.4 ASP-factorization

6.5 Orthogonalization on ASP
ITERATIVE METHODS

7.1 Sequential methods

7.2 Basic ASP-melhods

7.3 Alternating methods

7.4 Other implementationsand methods
SPECIAL APPROACHES FOR SOLVING Ax = b ON ASP

8.1 Reordering and tearing

8.2 Direct block methods

8.3 Parallel, optimally ordered factorization - Poof
8.4 Block, iterative methods

8.5 Chasing, tearing and shooting tridiagonal sets
OTHER PROBLEMS OF LINEAR ALGEBRA

9.1 Linear programming

9.2 Similarity transformation methods
9.3 Power metheds

9.4 Completing the solution

THE CASE STUDY - EPOC

10.1 Load flow - Loaf

10.2 State estimation problem - Step
10.3 Contingency analysis program - Cap
1¢.4 Economic dispatch programs - Edip
REFERENCES

INDEX

159
166
176
184
190

196
208
219
229

287
241
247
253
258

262
269
281
287

290
298
306
309
320

329

1. INTRODUCTION

Aims: To define the terms throughput, speedup, availability, reliability,
parallelism, pipelining, etc. To start classification of systems and introduce
"Alternating Sequential/Parallel" - ASP processing. To set-up a list of topics to

be discussed later.

1.1 AN OVERVIEW

This book deals with parallel hardware and softwace and it is only fitting to
start it by mentioning the reasons for wanting to connect processors and execute
programs in parallel. What we try to achieve are:

- Higher speeds

- Lower costs

- Better reliability and availability as well as
- Modularity.

Let us discuss each of these goals before proceeding to the problems of paral-
lel systems.

The speed of computers has increased by leaps and bounds since their introduc-
tion in the 1940's. Unfortunately, it seems difficult or costly to increase the
speed at the same pace much longer. A simple calculation will show that because of
basic physical laws we seem to be approaching the upper limit of the speed at which
a digital computer can transfer information. To this end, let us compare the (hard-
ware) speeds in the past to those possible in the future. An addition (32 bit-
words) required about 300 milliseconds in 1944 (on a relay computer), 300 micro-
seconds in 1954 (on a tube computer) and 300 nanoseconds in 1964 (on CDC 6600).
Suppose we try to build a computer with an addition time of 300 picoseconds. Since
the speed at which an electrical signal travels is 0.03 cm/psec, it would propagate
only 9 cm (less than 4") during the entire execution time of the instruction. It
will be difficult to achieve such extremely small propagation delays or reduce so
much the distances (except, maybe in VLSI). If we want to increase the speed, an
attempt must be made to find other solutions rather than always reducing the circuit
execution or propagation time.

One such direction is connecting processing elements in parallel. Stated
simply, we hope that connecting p processors will increase the overall speed accept-
ably close to p times that of a single processor.

The idea is not new: In 1842 Manabrea described the lectures by Babbage [MM61]

and wrote, ".

the machine can...give several results at the same time, which will
greatly abridge the whole amount..." of time. This amounts to parallelism, but
since in modern times a number of terms were coined for parallelism, we should sort

them out before we discuss parallel systems in more detail.

In general purpose (computer center) environments, the term "throughput" is
used. It means simply the number of different and separate jobs that a processor is
able to process in a given time. Hopefully with p processors it will be higher tham
with a single processor (and also correspondingly more expensive). Note though,
that if we install p separate computers, the throughput will increase p-fold, but
the turnaround time for any individual user will not change appreciably.

Another term used in connection with parallelism is that of "multiprogramming".
The idea is to process a number of jobs in a single cpu and a number of I/0 devices
in an overlapped fashion. The turnaround time should be considerably lower despite
the fact that only a single cpu is available.

In multiprogramming the attempt is made to decrease the time to put through a
number of jobs. In contradistinction, with '"speedup'", the time it takes to put a
single program through the system should be reduced.

In order to distinguish them even more, we might differentiate between ''con-
currency" and '"parallelism". Concurrency should mean that unrelated events are
executed at the same time, i.e., data is transferred from a disk to a line printer
while the processor works on the same or some other program. Processing all bits of
a word or p parts of a single program simultaneously is parallelism.

We can define space- and time-related parallelism. In the first case a number
of geographically distributed processors may work on the same job, whereas, in the
second case various stages of processing the same instructions are "pipelined”.

To sum up: In this book we are concerned with achieving speedup (not through-
put) by space parallelism at a reasonable cost and not with concurrency or pipe-
lining.

As long as the only processors available on the market were of the "dinosaur"
variety, the cost of connecting a number of them was prohibitive. Moreover, the
speedup does not increase necessarily with price. Since priority arbiters will
allow only a single access of a processor to a memory block at any given time, some
processors will have to wait ("memory contention"). Hence, the speedup will in-
crease less than p, the price by p and the solution may be counterproductive.

With the appearance of minicomputers, the price/performance comparison of
uni/multiprocessors has changed. Minicomputers (and even more S0, mMicroprocessors)
appear to be at least an order of magnitude more cost-effective than the larger
machines. There are a number of apparent reasons [Fu 76] for this phenomenon.

"1. Continuing advances in semi-conductor technology favor the small pro-
cessor. LSI (Large-Scale-Integration) memory, arithmetic and logic chips have been
able to dramatically cut the cost of producing minicomputers. Recent LSI advances
such as the Intel 3000 bit-slice processing element and the DEC LSI-11 will
continue to drive down the price of minicomputers. The larger processors that rely
on specialized logic to speed-up arithmetic functions, prefetch and buffer instruc-

tions, overlap instruction execution, etc. are less able to exploit the present

(LSI) technology.

2. Economics of scale. A product line that produces on the order of 10,000

p to 106 microcomputers a year) will not have the over-

minicomputers a year (or 10
head per computer that a product line has that produces 50 to 100 (large unipro-
cessor) computer systems a year.

3. Pricing policies bury the cost of software development for the large com-
puter systems in the price of the hardware."

We might add here some remarks, mostly to account for recent developments. So,
for instance INTEL commenced the iAPX432 -a 32-bit processor (thus opening the
"floating point" market for microcomputers). On the other hand when discussing
prices, one should not forget software; software costs more than hardware. Both
hardware and software costs consist of design and implementation costs which are re-
duced by high volume. Even in conventional computers (say, micro) large quantities
can be sold so that both hardware and software costs can be ammortized. The point
is, that parallel systems use mass-produced LSI-units and may achieve it easier.

The analysis in [Fu 76] shows a multiprocessor to have a cost performance ad-
vantage of three to four over uniprocessor systems when implementations using simi-
lar technologies are considered. This comparison is shown to be very sensitive to
memory prices and considerable attention should be given to normalizing memory costs
between the two systems.

The above considerations apply even more now because of the rapid development
and cost-decrease of microprocessors. Grosh's Law and Minsky's Conjecture (which
claimed that the cost of parallel processors would not be competitive), were dis-
pelled in [TP 73]. In particular, it is noted that a parallel "Pepe'"-system with
enough processing elements to provide the "Mips'-capability of a CDC7600 would cost
only 10% of a CDC7600. Parallel processing nowadays would use microprocessors or
VLSI units, stay in the framework of present-day technology and therefore be even
more cost-effective than indicated above.

Another reason for judging a parallel processing system (to be called from now
on a pps) to be more priceworthy is as follows. Up to the present, computers were
bought and installed as single units. Whenever a larger or faster computer was
needed, the old computer had to be abandoned and a new one bought (or leased). It
seems a much better approach to use a pps and add processing power when and if
needed. This may be called "incremental augmentation" or 'modularity". It allows
matching of a specific architecture to the needs of the customer.

The most important advantages of pps' are not their speedups or cost/effective-
ness, but their availability and reliability. This applies to process-control ap-
plications with which this book is concerned.

In process control a failure can have a much more dramatic effect on the safety
of the staff, the damage value (in M$) and on the loss of vital data than in a "com-

puter center" enviromment. This explains why it is so important to have a system

available all the time and be able to rely on its proper functioning.

A unicomputer is as reliable as the weakest of its parts. Also, when a single
computer is used, its failure is catastrophic, whereas in pps the remaining pro-
cessors are potentially available and could work undisturbed, yielding what is
called (gracefully) degraded service. This seems to have been achieved in the case
of the STAR-system [RLT 78].

It is sometimes required to remove a part of a pps either semipermanently for
maintenance or because a fault was detected in one of its parts. The system should
nevertheless be available and continue its service at only a slightly slower pace.
Moreover, if possible, this continuity of service should be achievable without
expenditure on redundant components as is done in some telephone exchanges or other
"fault tolerant'" systems. In these systems the hardware is duplicated or triplicat-
ed and all results are compared. Reliability is ensured by modular redundancy and
majority voting (say 2 out of 3) but is expensive and thus increases the cost/
effectiveness. We will try other solutions.

The definitions we will use are as follows: Reliability is the capability to
identify and remove a faulty component. Availability is the ability to provide ser-
vice even after the removal of a faulty component. We discuss them in more detail
later.

The reasons for parallel processing, namely speed, cost/effectiveness, relia-
bility and availability are interrelated. For instance, it seems difficult to put a
price on the increased reliability achieved through the use of parallelism in air-
traffic controllers. Even the shut-down of flight reservations because of an un-
available computer has a price. The increased speed of power dispatch computers
could have possibly prevented a blackoul so that speed also influences price.

We have mentioned the advantages of pps, namely, availability, reliability,
speed, cost/effectiveness and modularity. Still, the progress of parallelization
is not impressive [En 77]. What are the reasons?

It was once stated [BS 76] that parallel processors are not being installed,
despite their apparent advantages, primarily because:

S 1 The basic nature of engineering is to be conservative. This is a classi-
cal deadlock situation: we cannot learn how to program multiprocessors until such
systems exist; a system will not be built before programs are ready.

2. The market does not demand them. Another deadlock: how can the market
demand them since the market does not even know that such a structure can exist?
IBM has not yet blessed the concept."

To this inertia we would like to add the following problems attributed to pps':
- Restricted area of applications
- Unavailability of "parallel" mathematics
- Ignorance about possible problem decomposition

- Large expenditures projected for language and program development.

