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FOREWORD

The fields of "parallel processing" and "complexity theory" have drawn the at-
tention of researchers for the last 20-30 years. 1In essence, the idea is that
speeding up computations by building ever faster computers will eithee stop or will
not be very profitable. What can then be more natural than connecting computers in
parallel? With p processors, we might get slightly less than a p-fold increase in
speed, but an increase we will certainly get.

Still, after all Lhese years and a large body of excellent results, parallel
processing has not triumphed. A researcher working for a computer manufacturer even
told me that '"parallel processing will never work." What are the reasons for such
pessimism?

(1) The first is that those systems which were built were applied to what I
call "inherently parallel" problems. Thus, PEPE tracks a number of targets; each
processor has a single target assigned to it on which it works independently of and
concurrently with other processors. Payroll processing may be another example of an
inherently parallel problem; there is no connection between my salary and that of
my boss, so they can be processed independently.

Invariably, the question was asked how many such problems exist. A look at any
book on numerical analysis was rather disappointing: very few algorithms were any-
thing but purely sequential. Whether our minds work so that we do not do "B" until
having finished "A", or we are taught to solve problems that way, is immaterial.
The fact remains that few problems seem to be inherently parallel.

(2) Mathematicians have the habit that if they cannot have the computer they
need, they define a theoretical model and leave the worry of builc¢ing it to engi-
neers. Unfortunately, the abstract system so defined suffered from not being prae-
tical. Let me give examples of what I mean.

- The model assumes that all p processors are connected to a large, common mem-
ory. Whenever two or more processors requested the same word from it, they would
get if instantaneously. This is clearly not achievable and leads to strange be-
haviors: one system apparently slowed down with the addition of processors.

- The number of processors was to be unbounded. It had better be so, since,
as shown in one example of this book, multiplying two (nxn) matrices, requires w3
processors. A rather '"lean" matrix of n=100 would thus require a million proces-
sors.

(3) One of the first parallel systems built, the Illiac, has "private memor-
ies" for the "slaves." Unfortunately, the connections are such that quite often
only one of the 64 "slaves" or only the single master works - the rest are idle.
This is the case of "sequentialization" and attempts to reduce it were not always
crowned with success.

(4) A rather important objective of parallelization was that of reliability
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and availability. The first is defined here as the ability to identify a faulty
unit and amputate it, the second as the capability to proceed working despite this
removal. Illiac and similar systems have neither: if a unit fails, it must be ex-
changed or repaired before the system can work again.

This book is going to suggest a solution to this dilemma based on a single
observation:

Problems are neither inherently parallel nor completely sequential. Solutions
should adapt themselves to this fact rather than fighting it.

Take it in another way. When you are walking, the mind directs the movement of
your legs and hands changing from time to time the pace, direction, etc. The mind
works sequentially, the legs and hands are mostly independent and you would like to
minimize the movements or time. In computerese: Assemble a master/slaves systems
such that the master directs sequentialily the slaves which then work in parallel,
rather independently on different data (stones or meadows) .

The first part of the book (Chapters 1 to 4) will develop a hardware system
called ASP for "Alternating Sequential/Parallel" which, as its name implies, adapts
well to the central idea, is more than just a model (one system is commercially
available, another is being assembled), includes "private memories" and should have
high reliability/availability because of symmetry. The second part (Chapters 5 to
11) develops algorithms and programs for it. For each of these programs, the speed-
up was calculated; they all approach more or less the optimum.

The development of these algorithms was so easy that the thought occurred to me
that something must be wrong. On second thought, I concluded that this was only
natural since the following comparison, with other approaches holds: instead of
trying to eliminate completely the sequential parts of a solution we try only to
minimize it. The first is not always possible, but in the second case the amount of
minimization reflects only the author's ingenuity; I am sure readers will improve on
some or all algorithms proposed by me. They might also add to the general approach-
es developed: 'vertical programming" and "block schemes" as well as '"tearing,"
"chasing" and the like.

The problems chosen are all in numerical, linear algebra because, as once ob-
served, 75% of all scientific problems lead to linear equations. Since most work
on other parallel systems also centered on linear algébra, a comparison of effi-
ciency, speedup etc. between them and the ASP-methods is possible.

This is really a research report. Therefore the work of and on other systems
is only briefly sketched - as much as needed for the comparison. Additionally,
since the field of numerical solutions to linear algebra problems is very well
covered in literature, it also is only sketched - wherever needed for developing
ASP-algorithms. The reader is referred to the book by Young [Yo 71] for iterative
methods and to the books by Young and Gregory [YG] and by Stoer and Bullirsch [SB]

for all the rest. Especially the last is warmly recommended and 1 assume that the
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reader knows the relevant material so that nc repetition is needed.

Let me close with additional remarks:

(1) The numbering is according to sections. Thus, equation (15) in section
2 of chapter 5 is referred to as (15) throughout chapter 5, but as 5.2.15 in other
chapters.

(2) The book can be used for two graduate courses. The first part on the
model (architecture) of parallel systems would have to be expanded early - each sec-
tion of chapters-2 and 4 could (and probably should) be expanded into a separate
chapter. The second part (chapters 5 to 9) could also be expanded - especially on
the use of other (non-ASP) languages and algorithms.

(3) Instead of having a motto for every chapter, I offer two here:

"Nothing will ever be attempted if all possible objections muslL be firslL ovec-
come" .

"Science seeks the truth, eangineering - the compromise." The first, by Samuel
Johnson explains why I have had the audacity to offer a new solution at all. The
second, by me, explains why it had to be a compromise solution: I am an engineer,
not a mathematician. I will also be only too happy if readers will point out to me
mistakes. On the whole, I hope they find the approach to be new but correct and
simple.

A large part of chapters 6, 7 and 8 is from the Ph.D. Thesis and the papers
which Dr. Conrad published with me. I very much thank him for his cooperation.

Thanks go also to Dr. B.Z. Barta, Prof. K.S. Fu, Prof. W. Handler, Dr. O,
Herzog, Prof. M. Schlesinger, Mr. A. Shimor, Mr. J. Tenenbaum and Mr. B. Waumans -
they all read and made remarks to the manuscript. Finally, I would like to thank my
students who had to endure constant changes of text throughout the last eight years.
I am afraid that constant rewriting has introduced more errors than is usual - for
which I ask the readers forgiveness. The main points he should gather from this
book are:

- ASP is a new hardware unlike other models

- Because ASP drops the requirement of complete parallelization, it is easy to
develop new and efficient algorithms. I would be glad to hear from readers who have

done it in their field of work.



Acronyms

NOTATION

are used frequently in the text, but may be forgottea as soon as the

particular Section is completed, except for the following:

Apps = Abstract pps

pps = parallel processing systems (nonsingular-pp's)
Kopps, Mopps and Topps = Korn's, Multibus and Tristate oriented pps resp.
ASP = Alternating Sequential/Parallel system

EPOC = Electric Power Control

Poof = Parallel, optimally ordered factorization
SIMD = Single-instruction, Multiple-data system

MIMD = Multiple-imnstruction, Multiple-data system
PEPE = Parallel Ensemble of Processing Elements

SMS = Siemens' Multiprocessing System

cu = Control unit

PE = Processing element

ME = Memory element

We will use capital underlined letters for matrices, lower-case underlined for

vectors, lower case and Greek letters for scalars. In particular we use:

Matrices Vectors Scalars
c = no. of nonzero terms

A - general b-Ax=b d = density (c/n)
B - optimization ¢ - control e = error
C - general f - function f = function
D - diagonal g - gradient h = slice width
E - error h - constraints m = number of memories
F - Frobenius r - residual n = dimension
G - Givens' s - state, speedup p = number of slaves
H - Householder's X,z - general vectors q = index of slave
I - Iteration r = residual
J - Jacobian t = time
L - lower (left part of A) w = overrelaxation factor
M - symmetric o,M,T,B,Y are times of
0 - zero addition/subtraction,
P - permutation multiplication/division,
Q - orthonormal transfer, synchroniza-
R - right (upper part of A) tion and square root
S - similarity taking respectively.
T - tridiagonal A = eigenvalue
a .= i-th column of Aj; a, = i-th row of A w=o+p

L s o= . Q = number of operations
a5 = (i,j)-th element of A b = (time) ratig
a*b = scalar product n= eff1flen§y
“I = transpose of A v = utilization
a = o = speedup

Additional letters are used, but being local (to a few pages) may be forgotten

as soon as you finish reading.
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1. INTRODUCTION

Aims: To define the terms throughput, speedup, availability, reliability,
parallelism, pipelining, etc. To start classification of systems and introduce
"Alternating Sequential/Parallel" - ASP processing. To set-up a list of topics to

be discussed later.

1.1 AN OVERVIEW

This book deals with parallel hardware and softwace and it is only fitting to
start it by mentioning the reasons for wanting to connect processors and execute
programs in parallel. What we try to achieve are:

- Higher speeds

- Lower costs

- Better reliability and availability as well as
- Modularity.

Let us discuss each of these goals before proceeding to the problems of paral-
lel systems.

The speed of computers has increased by leaps and bounds since their introduc-
tion in the 1940's. Unfortunately, it seems difficult or costly to increase the
speed at the same pace much longer. A simple calculation will show that because of
basic physical laws we seem to be approaching the upper limit of the speed at which
a digital computer can transfer information. To this end, let us compare the (hard-
ware) speeds in the past to those possible in the future. An addition (32 bit-
words) required about 300 milliseconds in 1944 (on a relay computer), 300 micro-
seconds in 1954 (on a tube computer) and 300 nanoseconds in 1964 (on CDC 6600).
Suppose we try to build a computer with an addition time of 300 picoseconds. Since
the speed at which an electrical signal travels is 0.03 cm/psec, it would propagate
only 9 cm (less than 4") during the entire execution time of the instruction. It
will be difficult to achieve such extremely small propagation delays or reduce so
much the distances (except, maybe in VLSI). If we want to increase the speed, an
attempt must be made to find other solutions rather than always reducing the circuit
execution or propagation time.

One such direction is connecting processing elements in parallel. Stated
simply, we hope that connecting p processors will increase the overall speed accept-
ably close to p times that of a single processor.

The idea is not new: In 1842 Manabrea described the lectures by Babbage [MM61]

and wrote, ".

the machine can...give several results at the same time, which will
greatly abridge the whole amount..." of time. This amounts to parallelism, but
since in modern times a number of terms were coined for parallelism, we should sort

them out before we discuss parallel systems in more detail.



In general purpose (computer center) environments, the term "throughput" is
used. It means simply the number of different and separate jobs that a processor is
able to process in a given time. Hopefully with p processors it will be higher tham
with a single processor (and also correspondingly more expensive). Note though,
that if we install p separate computers, the throughput will increase p-fold, but
the turnaround time for any individual user will not change appreciably.

Another term used in connection with parallelism is that of "multiprogramming".
The idea is to process a number of jobs in a single cpu and a number of I/0 devices
in an overlapped fashion. The turnaround time should be considerably lower despite
the fact that only a single cpu is available.

In multiprogramming the attempt is made to decrease the time to put through a
number of jobs. In contradistinction, with '"speedup'", the time it takes to put a
single program through the system should be reduced.

In order to distinguish them even more, we might differentiate between ''con-
currency" and '"parallelism". Concurrency should mean that unrelated events are
executed at the same time, i.e., data is transferred from a disk to a line printer
while the processor works on the same or some other program. Processing all bits of
a word or p parts of a single program simultaneously is parallelism.

We can define space- and time-related parallelism. In the first case a number
of geographically distributed processors may work on the same job, whereas, in the
second case various stages of processing the same instructions are "pipelined”.

To sum up: In this book we are concerned with achieving speedup (not through-
put) by space parallelism at a reasonable cost and not with concurrency or pipe-
lining.

As long as the only processors available on the market were of the "dinosaur"
variety, the cost of connecting a number of them was prohibitive. Moreover, the
speedup does not increase necessarily with price. Since priority arbiters will
allow only a single access of a processor to a memory block at any given time, some
processors will have to wait ("memory contention"). Hence, the speedup will in-
crease less than p, the price by p and the solution may be counterproductive.

With the appearance of minicomputers, the price/performance comparison of
uni/multiprocessors has changed. Minicomputers (and even more S0, mMicroprocessors)
appear to be at least an order of magnitude more cost-effective than the larger
machines. There are a number of apparent reasons [Fu 76] for this phenomenon.

"1. Continuing advances in semi-conductor technology favor the small pro-
cessor. LSI (Large-Scale-Integration) memory, arithmetic and logic chips have been
able to dramatically cut the cost of producing minicomputers. Recent LSI advances
such as the Intel 3000 bit-slice processing element and the DEC LSI-11 will
continue to drive down the price of minicomputers. The larger processors that rely
on specialized logic to speed-up arithmetic functions, prefetch and buffer instruc-

tions, overlap instruction execution, etc. are less able to exploit the present



(LSI) technology.

2. Economics of scale. A product line that produces on the order of 10,000

p to 106 microcomputers a year) will not have the over-

minicomputers a year (or 10
head per computer that a product line has that produces 50 to 100 (large unipro-
cessor) computer systems a year.

3. Pricing policies bury the cost of software development for the large com-
puter systems in the price of the hardware."

We might add here some remarks, mostly to account for recent developments. So,
for instance INTEL commenced the iAPX432 -a 32-bit processor (thus opening the
"floating point" market for microcomputers). On the other hand when discussing
prices, one should not forget software; software costs more than hardware. Both
hardware and software costs consist of design and implementation costs which are re-
duced by high volume. Even in conventional computers (say, micro) large quantities
can be sold so that both hardware and software costs can be ammortized. The point
is, that parallel systems use mass-produced LSI-units and may achieve it easier.

The analysis in [Fu 76] shows a multiprocessor to have a cost performance ad-
vantage of three to four over uniprocessor systems when implementations using simi-
lar technologies are considered. This comparison is shown to be very sensitive to
memory prices and considerable attention should be given to normalizing memory costs
between the two systems.

The above considerations apply even more now because of the rapid development
and cost-decrease of microprocessors. Grosh's Law and Minsky's Conjecture (which
claimed that the cost of parallel processors would not be competitive), were dis-
pelled in [TP 73]. In particular, it is noted that a parallel "Pepe'"-system with
enough processing elements to provide the "Mips'-capability of a CDC7600 would cost
only 10% of a CDC7600. Parallel processing nowadays would use microprocessors or
VLSI units, stay in the framework of present-day technology and therefore be even
more cost-effective than indicated above.

Another reason for judging a parallel processing system (to be called from now
on a pps) to be more priceworthy is as follows. Up to the present, computers were
bought and installed as single units. Whenever a larger or faster computer was
needed, the old computer had to be abandoned and a new one bought (or leased). It
seems a much better approach to use a pps and add processing power when and if
needed. This may be called "incremental augmentation" or 'modularity". It allows
matching of a specific architecture to the needs of the customer.

The most important advantages of pps' are not their speedups or cost/effective-
ness, but their availability and reliability. This applies to process-control ap-
plications with which this book is concerned.

In process control a failure can have a much more dramatic effect on the safety
of the staff, the damage value (in M$) and on the loss of vital data than in a "com-

puter center" enviromment. This explains why it is so important to have a system



available all the time and be able to rely on its proper functioning.

A unicomputer is as reliable as the weakest of its parts. Also, when a single
computer is used, its failure is catastrophic, whereas in pps the remaining pro-
cessors are potentially available and could work undisturbed, yielding what is
called (gracefully) degraded service. This seems to have been achieved in the case
of the STAR-system [RLT 78].

It is sometimes required to remove a part of a pps either semipermanently for
maintenance or because a fault was detected in one of its parts. The system should
nevertheless be available and continue its service at only a slightly slower pace.
Moreover, if possible, this continuity of service should be achievable without
expenditure on redundant components as is done in some telephone exchanges or other
"fault tolerant'" systems. In these systems the hardware is duplicated or triplicat-
ed and all results are compared. Reliability is ensured by modular redundancy and
majority voting (say 2 out of 3) but is expensive and thus increases the cost/
effectiveness. We will try other solutions.

The definitions we will use are as follows: Reliability is the capability to
identify and remove a faulty component. Availability is the ability to provide ser-
vice even after the removal of a faulty component. We discuss them in more detail
later.

The reasons for parallel processing, namely speed, cost/effectiveness, relia-
bility and availability are interrelated. For instance, it seems difficult to put a
price on the increased reliability achieved through the use of parallelism in air-
traffic controllers. Even the shut-down of flight reservations because of an un-
available computer has a price. The increased speed of power dispatch computers
could have possibly prevented a blackoul so that speed also influences price.

We have mentioned the advantages of pps, namely, availability, reliability,
speed, cost/effectiveness and modularity. Still, the progress of parallelization
is not impressive [En 77]. What are the reasons?

It was once stated [BS 76] that parallel processors are not being installed,
despite their apparent advantages, primarily because:

S 1 The basic nature of engineering is to be conservative. This is a classi-
cal deadlock situation: we cannot learn how to program multiprocessors until such
systems exist; a system will not be built before programs are ready.

2. The market does not demand them. Another deadlock: how can the market
demand them since the market does not even know that such a structure can exist?
IBM has not yet blessed the concept."

To this inertia we would like to add the following problems attributed to pps':
- Restricted area of applications
- Unavailability of "parallel" mathematics
- Ignorance about possible problem decomposition

- Large expenditures projected for language and program development.



