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Introduction

Our monograph passed through several stages before acquiring
its present form. It began, several years ago, as material gathered
for our earlier work on ultrafilters but eventually discarded as too
peripheral to the principal subject. Lying inert for some time, and
slowly gaining some unity, it appeared later in our minds as a
systematization of existing applications of the Erdds— Rado principle
on quasi-disjoint sets to topological situations (mainly, in product
spaces). Finally, though, through the contributions of researchers
such as Gaifman, Laver, Galvin, Hajnal, Kunen, Argyros, Tsarpalias,
and Shelah, it became something more fascinating and delightful:
a study of the fine structure of the (countable) chain condition: and.,
a study of topological spaces (and also of partially ordered sets, and
of Boolean algebras, and even of Banach spaces) as a function of
their Souslin number.

The tools for the most part are the classical, yet constantly develop-
ing and inexhaustibly fertile, principles of infinitary combinatorics
(given in Chapter 1). Early in the development of topology, especially
in the Moscow School of Alexandroff and Urysohn, in the work of
Lusin and Souslin, in the Polish School, and in the work of
Hausdorff, informal set-theoretic and infinitary combinatorial
considerations were prominent. The subsequent systematic develop-
ment of infinitary combinatorics by the Hungarian School, led by
Erdos, based on Dedekind’s box (pigeonhole) principle and inspired
by Ramsey’s theorem, provided concrete techniques through which
topological questions could be examined. Combinatorial tools
returned to a central position in the work of Shanin, who studied
fundamental questions on the intersection properties of families of
open sets (the chain conditions, defined in detail in Chapter 2)
in product spaces, using quasi-disjoint sets. More recently in the
same spirit Arhangel’skii, Hajnal, Juhasz, Sapirovskii and others
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viii Introduction

have produced significant results on cardinal invariants associated
with topological spaces.

A simple but quite useful extension to singular cardinals of the
Erdos—Rado theorem on quasi-disjoint sets, noted independently
by Shelah and Argyros, allows for positive statements concerning
the conservation of chain conditions in cartesian products or
powers (in fact, in various stronger box topologies) in Shanin’s
spirit. However, methods involving quasi-disjoint sets, for both
regular and singular cardinals, have their limitations ; their usefulness
lies with spaces that are products, or have a product-like structure.
This is the case with the results of Chapter 3, where we study some
classes of chain conditions (calibres, compact-calibres, and pseudo-
compactness numbers); with Shelah’s result in Chapter 4, which
systematically exploits calibres of Z-products of dyadic powers to
define (non-compact) spaces whose calibre gaps are created more
or less at will; and with the results in Chapter 10, where the pseudo-
compactness properties given in Chapter 3 are applied to determine
the dependence of continuous functions defined on ‘large’ subsets of
products (with the cartesian or various stronger box topologies)
on a ‘small’ set of coordinates. Furthermore some of the results in
Chapters 6 and 7, concerning which we say more below, where a
limited use of quasi-disjoint sets can be observed, also concern the
dyadic powers {0,1}' with topologies quite different from the
cartesian product topology.

Results to the effect that a class of cardinals satisfying certain
obvious restrictions is realized as the set of non-compact-calibres of
a space, analogous to the results of Shelah for calibres, are obtained
in Chapter 8; here we use spaces of non-uniform ultrafilters rather
than X-products of dyadic powers. The corresponding statements
for pseudo-compactness numbers are not yet available and indeed
it is not clear in this case whether there are conditions analogous
to the ‘obvious restrictions’ dealing with calibre and compact-
calibre. The difficulty, as described in Chapter 9 using (permutation)
types of ultrafilters, derives from the fact that properties of pseudo-
compactness type are not finitely productive.

In Chapter 5 we study (arbitrary) topological spaces as a function
of their Souslin number, enlarging greatly Shanin’s original program.
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Combinatorial concepts more powerful than quasi-disjoint sets
are needed to deal with general spaces, where there is no explicit or
implicit product structure. Such principles have been formed by
Argyros and Tsarpalias, and used to determine a large class of
regular and singular calibres of compact spaces. In fact, as is men-
tioned below, assuming the generalized continuum hypothesis,
most calibres of compact spaces are determined by these methods
(see the second chart in section 7.18). It is worth noting that the
proof of the regular cardinal case uses a combinatorial kernel
sufficiently strong that it yieldsin Chapter | several related and classi-
cal results (quasi-disjoint families and the early ‘arrow relations’
of Erdos and Rado); we indicate in Chapter 1 that these results can
be proved also by use of a simple form of the pressing-down lemma.

These techniques were in fact inspired in part by questions in
functional analysis not directly concerned with chain conditions
and described only informally in this monograph. These questions
concern the existence of large independent families, and the resulting
isomorphic embedding of the Banach space I} into a-dimensional
subspaces of the space C(X) with X a compact, Hausdorff space
whose Souslin number is ‘small’ relative to o.

We noted above that Shelah’s result in Chapter 4 allows the
creation of completely regular, Hausdorff spaces whose classes of
calibres are assigned in advance. In contrast, the class of non-
calibres of a compact space is more restricted. In fact, assuming
the generalized continuum hypothesis, a regular cardinal o either
is not a calibre of a compact space for the trivial reason that o is
smaller than the Souslin number of the space, or a is indeed a calibre
of the space (with some possible ‘boundary’ exceptions of the form
a = B* with the cofinality of § smaller than the Souslin number of
the space, in which case the space still has calibre (a, f)).

The deeper results describing the fine structure of the countable
chain condition, especially the examples of Chapters 6 and 7, rely on
infinitary combinatorial techniques that in addition contain dia-
lectical (mostly diagonal) arguments. The success of a large part of
this undertaking depends on the continuum hypothesis: although
some remarkable fragments hold without any special hypotheses
(essentially, the statements concerning the existence of spaces with
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no strictly positive measure), other parts definitely collapse.

These examples lie, in the countable case, between the very strong
property of separability and the very general countable chain
condition (here abbreviated c.c.c.). This spectrum of chain condi-
tions —includingcalibre w ™, the existence of a strictly positive measure
and the related properties (*) and (**), Knaster’s property (K)
and the related properties K, for natural numbers n > 2, and the
productive countable chain condition — grew up around the problem
posed in 1920 by Souslin. The examples given in Chapter 7 by
Laver, Hajnal, Galvin and Kunen serve to differentiate some of these
properties. Thus, assuming the continuum hypothesis, there is a
c.c.c. space whose square is not a c.c.c. space, and there is a pro-
ductively c.c.c. space that does not have Knaster’s property. The
celebrated example in Chapter 6 of Gaifman, a c.c.c. space with no
strictly positive measure (and, assuming CH, with no calibre),
was for many years the only known example of its kind. Then came
the Galvin-Hajnal example of a compact space, obtained without
any special set-theoretic assumptions (and solving as well a problem
of Horn and Tarski), with no strictly positive measure and for which
every regular uncountable cardinal is a calibre. Recently for every
natural number n > 2 Argyros found a space with no strictly positive
measure, with property K, and, assuming CH, without property
K, . ,; motivated by a problem in model theory, Rubin and Shelah
found, assuming CH, another example of a space with K, and
without K, . Argyros found also, given an infinite cardinal «,
a c.c.c. space X such that for every set {u,:i <o} of regular, Borel
measures on X there is a non-empty, open subset U of X with
p;(U) = O for all i < a; subsequently Galvin observed that an appro-
priate modification of the Galvin—-Hajnal example mentioned above
produces the same phenomenon. In the opposite direction it is
shown, usually assuming appropriate segments of the generalized
continuum hypothesis, that the Stone spaces of the homogeneous
algebras are - indeed, they are the only examples known so far —
compact spaces with strictly positive measures but without various
(arbitrarily large) calibres. This class of examples, due to Erdds
for the separable homogeneous measure algebra, together with a
further example of Argyros (given in Chapter 5) related to his
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examples on strictly positive measure, serves as well to delineate
the class of allowed calibres of compact spaces.

In the Notes for Chapter 7, we describe the study of the chain
conditions on certain classes of spaces (for example, the Eberlein-
compact and the Corson-compact spaces) arising in the theory of
Banach spaces. As M. Wage has remarked, ‘the fields of analysis,
general topology and set theory have another happy reunion in the
study of weakly compact subsets of Banch spaces’.

After all is said, not everything is settled and complete. We are at
a point where fascinating problems still abound while beyond,
far-reaching connections can only be imagined. Our work we hope
will find its rest in changing: petafaiiov dvanadero.

W. Wistar Comfort and Stylianos A. Negrepontis
Middletown, Connecticut, USA and Athens, Greece
August 20, 1981
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1

Some Infinitary Combinatorics

This introductory chapter describes the basic combinatorial tools
used in the proofs of most of the results contained in the present
monograph.

Our treatment of this classical material is based on two (alter-
native) principles for regular cardinals: Argyros’ ramification lemma
(1.1) and the pressing-down lemma (1.3). The main combinatorial
results established for regular cardinals—the Erdés-Rado theorem
for quasi-disjoint families (1.4) and the Erd6s—Rado arrow relations
(1.5, 1.7) —are consequences of each of these principles. We need
also a simple extension to singular cardinals of the Erdés—Rado
theorem for quasi-disjoint families.

We note that sometimes, especially in Chapter 5, we obtain
information on calibres of spaces directly from Argyros’ ramifica-
tion lemma (and a technique for singular cardinals due to Tsarpalias),
rather than from some derived combinatorial result.

1.1 Lemma. (Argyros’ ramification lemma.) Let w < f < a with
B and a regular, let x be a cardinal such that 0 < x < p, and for
every A < awith |4| = alet 2, be a partition of A such that |2, <B
Then there is a family {A” :n < x} of subsets of « such that
|A,| = o for n <,
A, €2, forn <k,
A4,.< A, forn <n' <k, and
Ny, ¥
Proof. We define families {#, :n < «} such that
(i) oy = {a};
(i) 0<|o,| < B forn <x;
(iii) ifA,Ber/" and 4 # B, then AN B = & for n<k;
(iv) if A€o/, then |A| =« for # < k;

1



2 Chain conditions in topology

(v) o
(vi)
We proceed by recursion.
We define <7, by (i).
Next for n < k we define .« , ;. We set
oAy, =u{P,:Aed }, and

n+1

oA, ={Aesd,, :|A|=a}.

n+1

p+1 S Y12, Aed | for n < k;and
a\u, | <aforn <k

We verify conditions (ii), (iii), (iv), (v), and (vi) for = -y

(ii) Let Aeo/,. Since [A|=a and |2,|<f<eand A=UP,
and o is regular, there is Be 2, such that |B| = «; we have Be.&/, |
and hence «/, ,, # . Further, since |#/,|<f and |2,|< B for
Aes/, and B is regular, we have |/, , || < and hence |/, , | < B.

(iii), (iv) and (v) for .o/ q+1 are clear from the definitions.

(vi) For Aeo/, we set S,=U{Be? :|B|<a}, and we set
S=u{S,:Aeo }. Since ais regular and |2,| < « we have |S,| < «
for Aes/, ; hence |S| < a. Since

v, = (\u )US,

we have |a\Us/, || <a, as required.

Now we assume that # is a limit ordinal such that 0 <7 <k,
and that .o/ : has been defined for ¢ < 7, and we define .« . We set
o, = {ganf :A,es/, and gQ,,Aé #+ J},and

oA, ={Aesd,:|A|=a}.
We verify conditions (ii), (iii), (iv), (v) and (vi) for <.
(ii) We define ¢:o, - [[,_, o/, by the rule

P(n A) =<4, E<n).
&<n

It is clear that ¢ is a one-to-one function. Since |.«,| < f8 for & <7
and |n| <x and k < f, we have |[],_,.o,| < B by A.5(a); it follows
that

|,| <] <B.

We set S=u,_ (d\ua,). Since |\u.oZ,|<a for {<n and
|n| <k <« and « is regular, we have |S| <o. Since nS=v.,
and ldn] <ua, there is A€o/, such that |A| =o; we have Aesd,
and hence A, FD.
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(iii) and (iv) are clear for &,
(vi) We have
v, =u{ded, |4 <a}US.

Since || < p <« and |S| <a, we have |a\u;a¢ | < a, as required.

The deﬁmtlon of the family {</,:n <k} is complete.

Since |oz\ud"| <a for n<k and k<o and a is regular, we
have |uU, _ (x\U,)| <o, and hence there is

{ea\ L (@\U )
n<k

For n <« there is A, € o/, such that (€ 4,. It is clear that the family
{A4,:n <x} satisfies the required conditions.

We apply Lemma 1.1 most frequently with f = o. In Chapter 5
we will need the case

nel

B = (k)" <a with k and « regular.

The definition of a weakly compact cardinal is given in Appendix
A.

1.2 Lemma. Let o be a weakly compact cardinal, and for every
A c o with |4]| = o let 2, be a partition of A such that |2,| <a.
Then there is a family {4, :n < «} of subsets of a such that

|4,| = aforn<a,
A, €2, forn<a, and
A, <A, forn<n <o
Proof. We define families {/ :n <a} such that
(i) o, ={a};
(ii) 0< || <aforn<a;
(iti) if A,Beo/, and A # B, then AnB=J for n <a;
(iv) if Aeo/, then |4|=a for n <a; and
V) o, cui{P, Aed, }forn<a
(The argument is essentially that of Lemma 1.1. To verify (ii) for limit
ordinals 7 such that 0 <5 < a we set y =sup{|«/,|:{ <7n} and we
note that since y < a we have

|M"| < |.d:1| < l’l |M¢| < ylnl <272l < o.)
&<n

Now we set o =u, _ o/, and we define a partial order < on &/
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by A< Bif A > B. Then {«/,<) is a tree of height a with |.#/| < «
for n < a; hence there is a branch

2={A4,m<a}
of o/ with A, €./, for n <a. It is clear that the family {4, :n < a}
is as required.

1.3 Lemma. (The pressing-down lemma.) Let w <k <o with «
and «x regular, let

S={&<a:cf(§)>x},

and let f be a function from S to a such that f(¢) < & for EeS.
Then there are T< S with |T| =« and < « such that f(£) < for
all (eT.

Proof. We suppose the lemma fails. Then for { <o we have
|/~ ()] < o and hence there is g ({) such that

{<gl)<a and

f@) = foreS,E=g(0).
We define {{(n):n <k} by the rule

{0)=0,
Cm)=sup{l('):n < n} for non-zero limit ordinals n < k, and
{h+1)=g(Cm) forn<x;

and we set & = sup, _, { (). The function # — {(n) is an ordered-set
isomorphism of k into &, and since « is a regular cardinal we have
cf (§) = k and hence E€S. For 1 < k we have

glm)=Lh+1) <

and hence f(&) > {(y). From &= sup, ., C(n) it then follows that
f (&) = ¢, a contradiction.

The proof is complete.

We remark, retaining the notation of Lemma 1.3, that since
T=u,_(f'({{})nT) and o is regular, there are T'< T with
|T'| =« and { < T such that /(&) = ¢ for all Ee T".

Definition. An indexed family {S,:iel} of sets is a quasi-disjoint
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family if
NS, =8;nS; whenever j,j€l,j#j.

iel

It is clear that a family {S,:iel} is quasi-disjoint if and only if
there is a set S such that

§=S58,nS, whenever j,j€l,j #].

1.4 Theorem. Let w <k <a with « regular and let {S,:¢ <o}
be a family of sets such that |S§| < k for ¢ <. Then there are 4 < «
with |4| = o and a set J such that

Sémsé, =Jfor & Eed E+E.

Proof. (In the terminology of the definition above we are to show
that there is Ae[«]” such that {S,:£€ A4} is a quasi-disjoint family.
We give two proofs.)

First Proof (using Lemma 1.1). We suppose that if A =« and

{S,:£e A} is quasi-disjoint then |4| < a; and for every 4 c a with
IAT = o we set
J,= NS, and
seA

AB,={Bc A:if¢,EeB, ¢+ &, then S.NS, =J,}.

Since the set # , partially ordered by inclusion is inductive, there
is a maximal element B, €% ,. We have |B,| <o, and since {¢} €4,
for all (e A we have B, + .

For (e A\B, it follows from the maximality of B , that there is
{(&)e B, such that

SeN Sy ? Iy
We define
¢,:A\B, > U{2(S):(eB,}
by the rule
?48)=S.NnS,,
and we set

={B}u{e,({5}):Seu{2(5):(eB,}}.
Then 2, is a partltlon of A, and since |S | <k for (eB, and k < a,
we have |2(S,)| <« and hence (since |B,| <« and a is regular) we
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have |9’A] < a. It follows from (the case f = a of) Lemma 1.1 that
there is a family {4, :# < k} of subsets of « such that

|4,|=a forn <k,
A €2, forn <k,

n+1
A, <A, forn<n <k, and
N A +D.
n<k

For n < k there is S(n)e U{#(S)) :CeBA”} such that

Ary+1 = (0,;,,1({8(’7)})59)“ and
?4,8) =818, =Sm=2J, forled,,.
Since S(n) = (pA"(é) < S, for (e A we have

n+1°

JoSSe N S,=J

Eedy+1 Amws

and hence JA,,+1\‘]A,, # & for n < k; it follows that

vuJy,,

n<k

= 2 a2

n<k

Now let 5enn<KA,’. Then CEA,,+1 for n <k, and from S, JA"
we have
S;:>ulJ A,
n<k
and hence |S,| > k, a contradiction.
Second Proof (using Lemma 1.3). We assume without loss of
generality that S, o for ¢ <o. We set

S={¢&<a:cf(é)>x}
and we define f :S — o by the rule

f(@)=sup(S,n¢) for LeS.

For {eS we have |S,| <x <cf(é) and hence f(¢) <& It follows
from Lemma 1.3 that there are T< S with |T| = aand { < o such that
fIrl<t o

For £eT we have SénCe.@K(C), and since k < « and o is regular
we have |2, (0)| < a; it follows that there are T’ = T with |T'| =«
and Je 2, ({) such that S,n{=J for eT".

We define a function ¢:o — T as follows. We set ¢(0) = min T",
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and if { <a and @(¢') has been defined for all ¢ < ¢ we choose
@(&)e T’ such that

sup {¢(&):& <&} < (&), and
Sup(.V Sye)) < @(9);

such a choice is possible because

|éfé Soe < Z |S o] < ¢k <a

and T’ is cofinal in a.
We set A= {¢p(£):{ <a} and we claim that if & <& <a then

S N Spi =
Indeed since ¢(&'), p(&)e T’ we have

Soi) NV SpeN{=JIJ=J;

and if n > { and €S, ,, then since

sup (S, N @) = (@) <,

we have 1 > ¢ (&) > sup S, and hence n¢S
The extension to singular cardinals of the Erdos Rado theorem
for quasi-disjoint families is deferred to Theorem 1.9 below.
Though it is not needed later in this work, we note a strong
converse to Theorem 1.4.

Theorem. Let x and « be cardinals with k <o and o> w. If
for every family {S,:{ <o} of sets with |S,| <k for & <a there is
A < a such that |4| = « and {S;:{e A} is quasi-disjoint, then k < a.

Proof. Suppose there are f <«, 1 < such that f*>a, and let
{f{ ¢{<a} be a subset of f* with fe#fe for & <& <a. Then
S+ 1s a function from 4 to B, and we set

Sy =graph f, = {<{n,f,()>:n <1} for&<a.
Since ngl =A<k, there is 4 = a such that |A| =« and {S,:¢e4}
is quasi-disjoint. Since |[A|=a> f, for n < the functlon from

A to B defined by & — f ¢(n) is not one-to-one and hence there are
distinct elements &, & of A and ®(n) < B such that

fem) =fom)=oM);



