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PREFACE

This book is intended for a first course in the calculus, with the
usual prerequisite of analytic geometry. It does not purport to be a com-
prehensive treatise on the calculus at the intermediate or advanced level.
While an attempt is made to recognize and respect points of rigor, the
rigorous treatment of a considerable number of situations is regarded as
properly being relegated to a calculus course at a higher level.

Chapter 1 is an informal introduction to the calculus. An effort is
made to point up the need for the calculus as a means of satisfying man’s
intellectual curiosity as well as for solving practical problems. The intuitive
idea of a limit is exploited. Representative examples and exercises which
assist the student to refresh himself in the basic algebraic manipulations of
the calculus are given. Some attention is devoted to an historical orienta-
tion of the calculus in our present scientific era.

In considering limits in Chapter 2, simple but adequate definitions
are given of the limit of a variable and of the limit of a function. To avoid
plunging the student into a collection of abstractions, discussion of such
topics as infinite discontinuities and indeterminate forms is postponed to
later chapters.

Experience indicates that after the student has learned to differentiate
the general power function cu" and has learned that the derivative of the
sum is the sum of the derivatives, he is in a position to explore many
applications of the differential calculus to geometry, physics, and engineer-
ing. Chapter 3 is concerned with these things.

In line with a recent trend the derivative is symbolized by D.y, f'(z),
or y" until differentials are considered in Chapter 4; not until that point
is the alternate notation dy/dx for the derivative introduced. Also in
agreement with growing practice is the adoption of the notation In x for
log, « in Chapter 8.

It is becoming common practice to introduce integration much earlier
in the calculus than formerly. There are two reasons for this: (1) many
students take their calculus course concurrently with a physics course
which is based upon both the differential and integral processes of the
calculus; (2) many teachers of the caleulus have found that by inter-
weaving the processes of differentiation and integration numerous of the
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Preface

more interesting and important developments and applications of the
calculus can be taken up much earlier, thus making the instruction more
interesting and effective. After a student has learned to integrate cu™ du
and knows that the integral of a sum is the sum of the integrals, he is ready
for an over-view of the principles and procedures of the integral calculus.
That is given in Chapter 4 for power functions. Differentials are intro-
duced directly, and are not based upon infinitesimals. However, at a later
point the term 2nfinitesimal is explained. Special care is taken in presenting
the definite integral as the limit of a sum in Chapter 5. The author has
found that a few illustrative examples which actually show the calculation
of the limit of a sum pay dividends in subsequent improved understanding
by the student of this often used and all-important process.

The differential calculus of fractional functions, which calls for the
derivative of a product and a quotient and their attendant rather compli-
cated computations, is postponed to Chapter 7.

In Chapter 8 we endeavor to give an intelligible and coherent treat-
ment of the exponential and logarithmic functions, covering both differ-
ential and integral processes. Chapter 9 deals in like manner with the
trigonometric and inverse trigonometric functions. In both instances the
discussion is coordinated with the student’s earlier study of these functions.

To avoid confronting the student with a long list of formulas for in-
tegration at an early stage in the development of integration procedures,
the rather extensive work on integration in Chapters 4-8 is based upon
the use of only three formulas, namely those for

du
/‘u“ du, f—“—’ and fe” du.

The last ten chapters follow somewhat the same plan as that discussed
in detail above for the first nine chapters, with emphasis generally being
given to the careful exposition in as simple language as possible of the
fundamentals for the first-year’s course in the calculus.

The author wishes to express his appreciation to six other mathematics
teachers and to several hundred students who have enabled him to try out
the material of the book at the Florida State University during the past

two years.
THOMAS L. WADE
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chapter ]_

INTRODUCTION

The subject which we are now to explore and study is designated
variously by the names “the calculus,” “the differential and integral calcu-
lus,” and “the infinitesimal calculus.” Later we shall discuss briefly the
history of the calculus and the origin of these appellations of the subject.

) )

1: 1 The calculus as an intellectual achievement
and as a tool

First let us raise the question: Why study the calculus? Many of
our present-day physical comforts, recreational pleasures, and medical aids
are direct consequences of man’s development and application of this
branch of mathematics. A notable example of a natural phenomenon har-
nessed by man with the aid of the calculus is electricity. The ancient
Egyptians and Greeks knew how to produce electricity on a small scale by
rubbing together certain substances of opposite natures, a procedure com-
monly described in elementary science. But in order to produce, distribute,
and utilize electricity on a large scale it was necessary to recognize the
essential characteristics of this phenomenon and to state the basic relations
as equations connecting these essential characteristics. We are all con-
scious of the rapid growth during the last sixty years in the use of electricity
in lighting, refrigeration, transportation, communication, heating, and the
numerous modern devices which use electric motors.

The quantitative theory upon which this large-scale production and use
of electricity depends has its foundation in the mathematical formulation
given by James Clerk Maxwell (1831-1879) of the experimental results of
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Michael Faraday (1791-1867). These basic mathematical laws of electricity
are expressed in the medium of “‘differential equations,” which means that
they involve certain processes and concepts of the calculus. On the basis
of his mathematical formulation of the laws of electricity in the middle
of the nineteenth century, Maxwell predicted theoretically the existence of
wireless waves. From that prediction and its experimental verification by
Heinrich Hertz in 1888 there followed the development of wireless teleg-
raphy and radio, beginning commercially with Marconi’s successful trans-
mission of wireless signals across the English Channel in 1899.

Flectricity is typical of many natural phenomena for which man has
found the calculus to be the key for their control; some others are sound,
light, thermodynamics, work, and pressure. In so far as mere man is priv-
ileged to regulate and control certain aspects of his physical environment,
he does so largely through a knowledge of the functional relationships
(equations) connecting the variables which characterize a given situation.
Some of these functional relationships, such as Galileo’s law of falling bod-
ies, s= 16 {2, and Boyle’s law of gases, »p = k, may be obtained from ex-
perimental results organized and expressed mathematically without the aid
of the calculus. But in many other situations, as in the case of electricity
described above, experimental results lead to relations involving not just
the basic variables of the problem, but also the rates of change (derivatives)
of these variables with respect to some one of them. From such a “‘differ-
ential equation” one can arrive at the desired functional relation between
the variables of the problem only with the aid of processes of the calculus
entailing what is commonly called “integration” or “solving the differential
equation.”

A physicist or an engineer often deals with problems which call for the
use of the calculus. Serious students and research workers in physical
chemistry, physiological chemistry, econometrics, and biometrics find a
knowledge of the calculus necessary. For this reason it is commonly ex-
pected that an incipient physicist, chemist, biometrician, engineer, or the-
oretical economist will study the calculus for a year or more. An increasing
number of students in liberal arts colleges study the calculus out of intel-
lectual curiosity and a desire to gain an acquaintanceship with it, for the
same reasons they study logic, philosophy, drama, political science, and
like subjects.

In summary we may say that the calculus vs worthy of our study because
1t is at the same time one of the greatest intellectual achievements and one of the
most powerful tools known to man. If we consider contemporary culture as
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the acquaintanceship with the significant human achievements of the pres-
ent and recent eras, then the study of the calculus is surely cultural. Too
often the study of calculus is considered both dull and difficult. Certainly
a subject which has its origin in efforts to solve problems of significant
human interest in astronomy, mechanics, hydrodynamics, elasticity, grav-
itation, electricity, and magnetism cannot be very dull. And the industri-
ous, intelligent student who is imbued with a spirit of adventure for explor-
ing the realm of ideas finds the study of the calculus less difficult than
that of most sequential subjects; this is doubtless due to the fact that the
calculus unifies practically all the mathematics that the student has learned
before with only one main concept added, that of a limit.

The above indication that the calculus gives a procedure for solving dif-
ferential equations might erroneously leave the impression that such is its
only significant contribution. This is not true. For example, the calculus
gives immense aids to arithmetic calculations of many sorts. The logarith-
mic and trigonometric tables with which you have become acquainted in
earlier mathematics courses were constructed by means of infinite series,
one of the topics of the calculus.

1:2 Problems in maximum and minimum values

Among the problems with which the calculus deals extensively are
those concerned with maximum and minimum values of a function. We
now consider several such problems in a restricted manner.

ExampLE 1

Suppose that we have 400 feet of fence, and desire to fence in a rec-
tangular lot which has one side along a

high rock wall so that no fence is needed

along this side. Find the dimensions of @ x
the largest rectangular lot which can be 4

enclosed with the given 400 feet of fence. Fra. 1
SOLUTION

Let z represent the width of the rectangle in feet, y the length in
feet, and a the area. Then
a=zy and 2z y=400.

From the second of these relations y = 400 — 2 x; substituting this
value of y in the first relation, we get
[1] a=400r— 222 or a=—2(z%—200z).
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We want to determine the value of x for which a is greatest. Com-
pleting the square on x, within the parentheses, and making the
proper arithmetic compensation, we have

a=— 2(x?— 200 x 4+ 10,000) + 2(10,000),

or
[2] a=— 2(x — 100)2 + 20,000.

From this expression for a it should be apparent that — 2(x — 100)2
is negative or zero for any real value of z, and therefore a attains its
greatest value when this term is zero, or when = = 100 feet; further,
this greatest value of a is 20,000 square feet. The significance of this
result is that with 400 feet of fence we may enclose any number of
rectangular lots, but there is one of the lots with area greater than
that of the others. This lot with greatest area has an area of 20,000
square feet, with width of 100 feet and length of 200 feet. To make
the significance of this result more emphatic to the student it may
be advantageous to represent some relative values of z, y, and a, as
in the table below.

When x = 20 40 80 100 125 150
then y= 360 320 240 200 150 100
and a=| 7,200 | 12,800 | 19,200 | 20,000 | 18,750 | 15,000

Clearly, with 400 feet of fence we can enclose many rectangular lots
of the kind described; of these there is a largest one, with width
100 feet, length 200 feet, and area 20,000 square feet. It is customary
to say that relative to the function [7] the value x = 100 gives the
maximum value of a.

This problem we were able to work by a special algebraic procedure and
special observation because the relation [7] gives a as a quadratic function
of . More complicated problems could not be done in this manner. But
the calculus gives a general procedure for handling problems in maxima
and minima for all types of elementary functions. To work the present
problem by the calculus, we would calculate the derivative of a with respect
to z, denoted by D,a. We would find D,a=400—4 z. Setting this deriva-
tive equal to zero, we get 400 — 4 z = 0, which when solved yields the value
of « for which ¢ is maximum. The procedure for the construction of the
derivative and for its use as indicated here is given in the next section.

ExampLE 2

Suppose that we want to construct an open top rectangular box
which is to have a volume of 40 cubic feet. The sides are to cost 12 cents
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per square foot, and the bottom is to cost 15 cents per square foot.
Find the dimensions of the box which will
make the cost least, the base being a square.

SOLUTION

Let = be the length of a side of the square
base in feet, and y the height of the box in
feet. The area of the base is 22 square feet, Fic. 2

and the cost of the base is 15 22 cents. The

area of one of the four equal sides is xy square feet, the area of the
four sides is 4xy square feet, and the cost of the four sides is
4 1y(12)=48 zy cents. Let ¢ be the total cost of the box in cents. Then

c=15224+48xy and z%y = 40.

Eliminating y from these relations by substituting from the second
in the first, we get

[3] (:=1512+@-
We want to find the value of z that will make ¢ least, or a minimum.
There is no procedure for treating the relation [3] comparable to that
for the algebraic treatment of [7/] on page 3. The calculus would
tell us to find the derivative of ¢ with respect to z, D¢, set it equal
to zero, and solve for x. Here D,c =30 x — 1920 z~2. Setting this
equal to zero and solving for z, we get =64, or t=4. Then
y = 2.5 and ¢ = 720 cents, or $7.20.
There are many boxes that can be built to satisfy the given con-
ditions. Thus with the same volume one may be constructed with
dimensions 2 by 2 by 10 feet with a cost of $10.20; another can be
constructed with dimensions 6 by 6 by % feet with a cost of $8.60.
But the one with the dimensions 4 feet by 4 feet by 2.5 feet costs
the least, or the minimum, that minimum cost being $7.20.

EXERCISES

. For the relation a = 400 x — 2 22 developed in Example 1 construct
a table of corresponding values of x and a by assigning to x the val-
ues 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 and calculating the
corresponding values of a. Regard each pair of corresponding val-
ues of x and a as the coordinates of a point, plot these points on
squared paper (with the z-axis horizontal and the a-axis vertical),
and draw a smooth curve through these points. What kind of curve
is this? From the graph what value of x appears to yield the great-
est value of a? Does this graphical estimate agree with the result
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obtained on page 4 by algebraic means? What is the position of
the tangent to the curve at the point for which a is maximum?

2. A sheet of metal 24 inches wide is to be bent upward the same
amount on two opposite edges to

form a trough. What should the
depth = of the trough be in order ’
that its carrying capacity be a max-

imum; that is, what should the P>
depth be in order that the area of a g
cross-section perpendicular to the

edge shall be a maximum? Fre. B

HINT: Fxpress the area a of the cross section in terms of the depth z, and pro-
ceed as in Example 1.

3. By assigning to x appropriate values, construct a table and a graph
for the relation of Exercise 2. Ask yourself questions similar to those
of Exercise 1.

4. The power w, in watts, delivered to a load by a current of 7 amperes
through a resistance of 24 ohms when an electromotive force of 110
volts is maintained at one end of the circuit is given by the formula
w=1107— 24 ¢>. Using the method of Example 1, find the value
of z for which w is maximum. What is this maximum value of w?

5. For the relation [3] developed in Example 2 construct a table by
assigning to x the values 1, 3, 2, 3, 3, %, 4, 3, 5, %, 6 and calculat-
ing the corresponding values of ¢. Using these tabular values, draw
a graph with the z-axis horizontal and the c-axis vertical. From
this graph what value of x appears to yield the least value of ¢? How
does this graphical estimate compare with the value of x obtained
in Example 2 with the aid of the anticipated calculus?

1:3 The derivative

Consider the algebraic relation
(4] y =16 x2.

As the variable x changes from a given value z; to another value zs, the
amount of change in z is 22 — x;. This change x2 — z; in z is called an
increment of x and is denoted by the symbol Az (read “delta z”’); it may
be positive or negative. As the quantity = changes or takes on an incre-
ment Az, the quantity y changes or takes on an increment Ay. Oftentimes,
for a given relation y = f(z), we want to obtain an expression for Ay in
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terms of  and Ax. Among several ways of interpreting the relation [4],
one is to consider it as the equation of a curve, a parabola opening upward
with the y-axis as the axis of symmetry. Suppose that ; and y; are corre-
sponding values of 2 and ¥ for the relation (4], and similarly that 2; + Az,
y1 + Ay are another pair of such corresponding values. A portion of the
parabola in the first quadrant is repre-
sented in Fig. 4, where P is the point
(x1, ¥1). Since the point Q(z; + Ax,
y1+ Ay) lies on the parabola, its coordi-

Y

16 |~

14

nates satisfy the equation [4] of the pa- =T Q
rabola, and we have or
sl
; = 16 Azx)2
y1+ Ay = 16(z1 + Az) Ll AY
or
e
(5] ok P AT
1+ Ay = 16 212 + 32 21 Axr + 1660732, . S S S
nt A= 10nt s AR ST R
Also Fic. 4

(6] y1 =16 212,

since the point P (a1, 1) is on the parabola. Subtracting (6] from [5] we get

(7] Ay =32z Az + 16(Ax)2.
Division of both sides of [7] by Ax results in
Ay _ g9 ,
[8] Az 32 a1+ 16 Ax.

It is noteworthy that to effect the division by Az it is necessary to assume
that Az 5% 0. Therefore, in our subsequent considerations of [8] we must
be careful that we do not assign to Ax the value zero. Division by zero is
not a permissible operation in conventional mathematics.

In the relation [8] consider x; as fixed or constant, and let Az vary by
becoming smaller and smaller (but remember that we have obligated our-
selves to refrain from letting Az take on zero as one of its values). Some
representative values of Az and the corresponding values of Ay/Ax are
given in the following table.

When  Ar=+s 16,600 1600000

then Ay/Al =32z1+1 32z + T;&ﬁﬁ 32z + T:ﬁﬁ%:ﬁﬁb‘




