Herbert Kuchen
Kazunori Ueda (Eds.)

Functional and
Logic Programming

5th International Symposium, FLOPS 2001
Tokyo, Japan, March 2001
Proceedings

LNCS 2024

@®): Springer

| Herbert Kuchen Kazunori Ueda (Eds.)

Functional and
Logic Programming

5th International Symposium, FLOPS 2001
Tokyo, Japan, March 7-9, 2001
Proceedings

D

E200401790

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Herbert Kuchen

Westfilische Wilhelms-Universitit Miinster, Institut fiir Wirtschaftsinformatik
Steinfurter StraBe 109, 48149 Miinster, Germany

E-mail: kuchen @uni-muenster.de

Kazunori Ueda

Waseda University, Department of Information and Computer Science
4-1, Okubo 3-chome, Shinjuku-ku, Tokyo 169-8555, Japan

E-mail: ueda@ueda.info.waseda.ac.jp

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Functional and logic programming : 5th international symposium ;
proceedings / FLOPS 2001, Tokyo, Japan, March 7 - 9, 2001. Herbert
Kuchen ; Kazunori Ueda (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo :
Springer, 2001

(Lecture notes in computer science ; Vol. 2024)

ISBN 3-540-41739-7

CR Subject Classification (1998): D.1.1, D.1.6,D.3,E3,1.2.3

ISSN 0302-9743
ISBN 3-540-41739-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York

a member of BertelsmannSpringer Science+Business Media GmbH
http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001

Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10782353 06/3142 543210

Lecture Notes in Computer Science 2024
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Preface

This volume contains the proceedings of the Fifth International Symposium on
Functional and Logic Programming, FLOPS 2001, held in Tokyo, Japan, March
7-9, 2001, and hosted by Waseda University.

FLOPS is a forum for research on all issues concerning functional program-
ming and logic programming. In particular, it aims to stimulate the Cross-
fertilization as well as the integration of the two paradigms. The previous FLOPS
meetings took place in Fuji-Susono (1995), Shonan (1996), Kyoto (1998), and
Tsukuba (1999). The proceedings of FLOPS’99 were published by Springer-
Verlag as Lecture Notes in Computer Science, volume 1722.

There were 40 submissions, 38 of which were considered by the program
committee. They came from Australia (5), Belgium (1/3), Denmark (3), Egypt
(1), France (Y2), Germany (2 V/3), Italy (4 %/3), Japan (5), Korea (11/), Mexico
(1), The Netherlands (1 /), Spain (10 /¢), Switzerland (1), UK (15%), and USA
(11/2). Each paper was reviewed by at least three, and mostly four, reviewers.
The program committee meeting was conducted electronically for the period of
two weeks in November 2000. As a result of active discussions, 21 papers (52.5%)
were selected for presentation, which appear in this volume. In addition, we are
very pleased to include in this volume full papers by three distinguished invited
speakers, namely Gopalan Nadathur, George Necula, and Taisuke Sato.

On behalf of the program committee, the program chairs would like to thank
the invited speakers who agreed to give talks and contribute papers, all those who
submitted papers, and all the referees for their careful work in the reviewing and
selection process. The support of our sponsors is also gratefully acknowledged.
In particular, we would like to thank the Japan Society for Software Science
and Technology (JSSST), Special Interest Group on Principles of Programming,
and the Association for Logic Programming (ALP). Finally, we would like to
thank the members of the organizing committee, notably Zhenjiang Hu, Yasuhiro
Ajiro, Kazuhiko Kakehi, and Madoka Kuniyasu, for their invaluable support
throughout the preparation and organization of the symposium.

January 2001 Herbert Kuchen
Kazunori Ueda

Symposium Organization

Program Chairs

Herbert Kuchen University of Miinster, Germany
Kazunori Ueda Waseda University, Tokyo, Japan

Program Committee

Sergio Antoy Portland State University, USA

Gopal Gupta University of Texas at Dallas, USA
Michael Hanus University of Kiel, Germany

Fergus Henderson University of Melbourne, Australia
Zhenjiang Hu University of Tokyo, Japan

Herbert Kuchen University of Miinster, Germany
Giorgio Levi University of Pisa, Italy

Michael Maher Griffith University, Brisbane, Australia
Dale Miller Pennsylvania State University, USA

I. V. Ramakrishnan State University of New York at Stony Brook, USA
Olivier Ridoux IRISA, Rennes, France

Mario Rodriguez-Artalejo Complutense University, Madrid, Spain
Colin Runciman University of York, UK

Akihiko Takano Hitachi, Ltd., Japan

Peter Thiemann Freiburg University, Germany
Yoshihito Toyama Tohoku University, Japan

Kazunori Ueda Waseda University, Tokyo, Japan

Local Arrangements Chair
Zhenjiang Hu University of Tokyo, Japan

List of Referees

The following referees helped the program committee in evaluating the papers.

Their assistance is gratefully acknowledged.

Yohji Akama,
Joseph Albert
Kenichi Asai

Gilles Barthe

Cristiano Calcagno

Manuel M. T. Chakravarty

Alessandra Di Pierro
Rachid Echahed
Moreno Falaschi
Adrian Fiech

Peter Flach
Maurizio Gabbrielli

Maria Garcia de la Banda,

Antonio Gavilanes
Robert Gliick
Stefano Guerrini
Hai-feng Guo

Bill Harrison
Simon Helsen
Martin Henz
Hideya Iwasaki
Mark Jones
Kazuhiko Kakehi
Owen Kaser
Robert Kowalski

K. Narayan Kumar
Keiichirou Kusakari
Javier Leach-Albert
Francisco Lépez-Fraguas
Wolfgang Lux
Narciso Mart{-Oliet

Andrea Masini
Bart Massey
Hidehiko Masuhara
Aart Middeldorp
Yasuhiko Minamide
Luc Moreau
Shin-ya Nishizaki
Susana Nieva,
Mizuhito Ogawa,
Satoshi Okui
Fernando Orejas
Giridhar Pemmasani
Marek Perkowski
Enrico Pontelli

C. R. Ramakrishnan
Francesca Rossi
Salvatore Ruggieri
Masahiko Sakai
Chiaki Sakama
Takafumi Sakurai
R. Sekar

Don Smith

Tran Cao Son
Harald Sgndergaard
Frank Steiner

Eijiro Sumii

Taro Suzuki

Izumi Takeuti
Naoyuki Tamura
Tetsuro Tanaka
David Wakeling

Lecture Notes in Computer Science

For information about Vols. 1-1920

please contact your bookseller or Springer-Verlag

Vol. 1921: S.W. Liddle, H.C. Mayr, B. Thalheim (Eds.),
Conceptual Modeling for E-Business and the Web. Pro-
ceedings, 2000. X, 179 pages. 2000.

Vol. 1922: J. Crowcroft, J. Roberts, M.1. Smirnov (Eds.),
Quality of Future Internet Services. Proceedings, 2000.
XI, 368 pages. 2000.

Vol. 1923: J. Borbinha, T. Baker (Eds.), Research and
Advanced Technology for Digital Libraries. Proceedings,
2000. XVII, 513 pages. 2000.

Vol. 1924: W. Taha (Ed.), Semantics, Applications, and
Implementation of Program Generation. Proceedings,
2000. VIII, 231 pages. 2000.

Vol. 1925: J. Cussens, S. DZeroski (Eds.), Learning Lan-
guage in Logic. X, 301 pages 2000. (Subseries LNAT).

Vol. 1926: M. Joseph (Ed.), Formal Techniques in Real-
Time and Fault-Tolerant Systems. Proceedings, 2000. X,
305 pages. 2000.

Vol. 1927: P. Thomas, H.W. Gellersen, (Eds.), Handheld
and Ubiquitous Computing. Proceedings, 2000. X, 249
pages. 2000.

Vol. 1928: U. Brandes, D. Wagner (Eds.), Graph-Theo-
retic Concepts in Computer Science. Proceedings, 2000.
X, 315 pages. 2000.

Vol. 1929: R. Laurini (Ed.), Advances in Visual Informa-
tion Systems. Proceedings, 2000. XII, 542 pages. 2000.

Vol. 1931: E. Horlait (Ed.), Mobile Agents for Telecom-
munication Applications. Proceedings, 2000. IX, 271
pages. 2000.

Vol. 1658: J. Baumann, Mobile Agents: Control Algo-
rithms. XIX, 161 pages. 2000.

Vol. 1756: G. Ruhe, F. Bomarius (Eds.), Learning Soft-
ware Organization. Proceedings, 1999. VIII, 226 pages.
2000.

Vol. 1766: M. Jazayeri, R.G.K. Loos, D.R. Musser (Eds.),
Generic Programming. Proceedings, 1998. X, 269 pages.
2000.

Vol. 1791: D. Fensel, Problem-Solving Methods. XII, 153
pages. 2000. (Subseries LNAI).

Vol. 1799: K. Czarnecki, U.W. Eisenecker, Generative
and Component-Based Software Engineering. Proceed-
ings, 1999. VIII, 225 pages. 2000.

Vol. 1812: J. Wyatt, J. Demiris (Eds.), Advances in Ro-
bot Learning. Proceedings, 1999. VII, 165 pages. 2000.
(Subseries LNAI).

Vol. 1932: Z.W. Ra§, S. Ohsuga (Eds.), Foundations of
Intelligent Systems. Proceedings, 2000. XII, 646 pages.
(Subseries LNAI).

Vol. 1933: R.W. Brause, E. Hanisch (Eds.), Medical Data
Analysis. Proceedings, 2000. XI, 316 pages. 2000.

Vol. 1934:].S. White (Ed.), Envisioning Machine Trans-
lation in the Information Future. Proceedings, 2000. XV,
254 pages. 2000. (Subseries LNAI).

Vol. 1935: S.L. Delp, A.M. DiGioia, B. Jaramaz (Eds.),
Medical Image Computing and Computer-Assisted Inter-
vention — MICCAI 2000. Proceedings, 2000. XXV, 1250
pages. 2000.

Vol. 1936: P. Robertson, H. Shrobe, R. Laddaga (Eds.),
Self-Adaptive Software. Proceedings, 2000. VIII, 249
pages. 2001.

Vol. 1937: R. Dieng, O. Corby (Eds.), Knowledge Engi-
neering and Knowledge Management. Proceedings, 2000.
XIII, 457 pages. 2000. (Subseries LNAI).

Vol. 1938: S. Rao, K.I. Sletta (Eds.), Next Generation
Networks. Proceedings, 2000. X1, 392 pages. 2000.

Vol. 1939: A. Evans, S. Kent, B. Selic (Eds.), «<UML» —
The Unified Modeling Language. Proceedings, 2000. X1V,
572 pages. 2000.

Vol. 1940: M. Valero, K. Joe, M. Kitsuregawa, H. Tanaka
(Eds.), High Performance Computing. Proceedings, 2000.
XV, 595 pages. 2000.

Vol. 1941: A.K. Chhabra, D. Dori (Eds.), Graphics Rec-
ognition. Proceedings, 1999. XI, 346 pages. 2000.

Vol. 1942: H. Yasuda (Ed.), Active Networks. Proceed-
ings, 2000. XI, 424 pages. 2000.

Vol. 1943: F. Koornneef, M. van der Meulen (Eds.), Com-
puter Safety, Reliability and Security. Proceedings, 2000.
X, 432 pages. 2000.

Vol. 1944: K.R. Dittrich, G. Guerrini, I. Merlo, M. Oliva,
M.E. Rodriguez (Eds.), Objects and Databases. Proceed-
ings, 2000. X, 199 pages. 2001.

Vol. 1945: W. Grieskamp, T. Santen, B. Stoddart (Eds.),
Integrated Formal Methods. Proceedings, 2000. X, 441
pages. 2000.

Vol. 1946: P. Palanque, F. Paternd (Eds.), Interactive
Systems. Proceedings, 2000. X, 251 pages. 2001.

Vol. 1947: T. Sgrevik, F. Manne, R. Moe, A.H.
Gebremedhin (Eds.), Applied Parallel Computing. Pro-
ceedings, 2000. XII, 400 pages. 2001.

Vol. 1948: T. Tan, Y. Shi, W. Gao (Eds.), Advances in
Multimodal Interfaces — ICMI 2000. Proceedings, 2000.
XVI, 678 pages. 2000.

Vol. 1949: R. Connor, A. Mendelzon (Eds.), Research
Issues in Structured and Semistructured Database Pro-
gramming. Proceedings, 1999. XII, 325 pages. 2000.

Vol. 1950: D. van Melkebeek, Randomness and Complete-
ness in Computational Complexity. XV, 196 pages. 2000.
Vol. 1951: F. van der Linden (Ed.), Software Architectures

for Product Families. Proceedings, 2000. VIII, 255 pages.
2000.

Vol. 1952: M.C. Monard, J. Simdo Sichman (Eds.), Ad-
vances in Artificial Intelligence. Proceedings, 2000. XV,
498 pages. 2000. (Subseries LNAI).

Vol. 1953: G. Borgefors, 1. Nystrom, G. Sanniti di Baja
(Eds.), Discrete Geometry for Computer Imagery. Pro-
ceedings, 2000. XI, 544 pages. 2000.

Vol. 1954: W.A. Hunt, Jr., S.D. Johnson (Eds.), Formal
Methods in Computer-Aided Design. Proceedings, 2000.
X1, 539 pages. 2000.

Vol. 1955: M. Parigot, A. Voronkov (Eds.), Logic for
Programming and Automated Reasoning. Proceedings,
2000. X111, 487 pages. 2000. (Subseries LNAI).

Vol. 1956: T. Coquand, P. Dybjer, B. Nordstrém, J. Smith
(Eds.), Types for Proofs and Programs. Proceedings, 1999.
VII, 195 pages. 2000.

Vol. 1957: P. Ciancarini, M. Wooldridge (Eds.), Ag_ent-
Oriented Software Engineering. Proceedings, 2000. X, 323
pages. 2001.

Vol. 1960: A. Ambler, S.B. Calo, G. Kar (Eds.), Services
Management in Intelligent Networks. Proceedings, 2000.
X, 259 pages. 2000.

Vol. 1961: J. He, M. Sato (Eds.), Advances in Computing
Science — ASIAN 2000. Proceedings, 2000. X, 299 pages.
2000.

Vol. 1963: V. Hlavag, K.G. Jeffery, J. Wiedermann (Eds.),
SOFSEM 2000: Theory and Practice of Informatics. Pro-
ceedings, 2000. XI, 460 pages. 2000.

Vol. 1964: J. Malenfant, S. Moisan, A. Moreira (Eds.),
Object-Oriented Technology. Proceedings, 2000. X1, 309
pages. 2000.

Vol. 1965: C. K. Kog, C. Paar (Eds.), Cryptographic Hard-
ware and Embedded Systems - CHES 2000. Proceedings,
2000. XI, 355 pages. 2000.

Vol. 1966: S. Bhalla (Ed.), Databases in Networked In-
formation Systems. Proceedings, 2000. VIII, 247 pages.
2000.

Vol. 1967: S. Arikawa, S. Morishita (Eds.), Discovery
Science. Proceedings, 2000. XII, 332 pages. 2000.
(Subseries LNAI).

Vol. 1968: H. Arimura, S. Jain, A. Sharma (Eds.), Algo-
rithmic Learning Theory. Proceedings, 2000. XI, 335
pages. 2000. (Subseries LNAI).

Vol. 1969: D.T. Lee, S.-H. Teng (Eds.), Algorithms and
Computation. Proceedings, 2000. XIV, 578 pages. 2000.

Vol. 1970: M. Valero, V.K. Prasanna, S. Vajapeyam
(Eds.), High Performance Computing — HiPC 2000. Pro-
ceedings, 2000. X VIII, 568 pages. 2000.

Vol. 1971: R. Buyya, M. Baker (Eds.), Grid Computing —
GRID 2000. Proceedings, 2000. XIV, 229 pages. 2000.

Vol. 1972: A. Omicini, R. Tolksdorf, F. Zambonelli (Eds.),
Engineering Societies in the Agents World. Proceedings,
2000. 1X, 143 pages. 2000. (Subseries LNAI).

Vol. 1973: J. Van den Bussche, V. Vianu (Eds.), Data-
base Theory — ICDT 2001. Proceedings, 2001. X, 451
pages. 2001.

Vol. 1974: S. Kapoor, S. Prasad (Eds.), FST TCS 2000:
Foundations of Software Technology and Theoretical
Computer Science. Proceedings, 2000. XIII, 532 pages.
2000.

Vol. 1975: J. Pieprzyk, E. Okamoto, J. Seberry (Eds.),
Information Security. Proceedings, 2000. X, 323 pages.
2000.

Vol. 1976: T. Okamoto (Ed.), Advances in Cryptology —
ASIACRYPT 2000. Proceedings, 2000. XII, 630 pages.
2000.

Vol. 1977: B. Roy, E. Okamoto (Eds.), Progress in
Cryptology — INDOCRYPT 2000. Proceedings, 2000. X,
295 pages. 2000.

Vol. 1978: B. Schneier (Ed.), Fast Software Encryption.
Proceedings, 2000. VIII, 315 pages. 2001.

Vol. 1979: S. Moss, P. Davidsson (Eds.), Multi-Agent-

Based Simulation. Proceedings, 2000. VIII, 267 pages.
2001. (Subseries LNAI).

Vol. 1983: K.S. Leung, L.-W. Chan, H. Meng (Eds.), In-
telligent Data Engineering and Automated Learning -
IDEAL 2000. Proceedings, 2000. XVI, 573 pages. 2000.
Vol. 1984: J. Marks (Ed.), Graph Drawing. Proceedings,
2001. XII, 419 pages. 2001.

Vol. 1987: K.-L. Tan, M.J. Franklin, J. C.-S. Lui (Eds.),
Mobile Data Management. Proceedings, 2001. XIII, 289
pages. 2001.

Vol. 1989: M. Ajmone Marsan, A. Bianco (Eds.), Quality

of Service in Multiservice IP Networks. Proceedings,
2001. XII, 440 pages. 2001.

Vol. 1991: F. Dignum, C. Sierra (Eds.), Agent Mediated
Electronic Commerce. VIII, 241 pages. 2001. (Subseries
LNAI).

Vol. 1992: K. Kim (Ed.), Public Key Cryptography. Pro-
ceedings, 2001. XI, 423 pages. 2001.

Vol. 1993: E. Zitzler, K. Deb, L. Thiele, C.A.Coello
Coello, D. Corne (Eds.), Evolutionary Multi-Criterion
Optimization. Proceedings, 2001. XIII, 712 pages. 2001.
Vol. 1995: M. Sloman, J. Lobo, E.C. Lupu (Eds.), Poli-
cies for Distributed Systems and Networks. Proceedings,
2001. X, 263 pages. 2001.

Vol. 1998: R. Klette, S. Peleg, G. Sommer (Eds.), Robot
Vision. Proceedings, 2001. IX, 285 pages. 2001.

Vol. 2000: R. Wilhelm (Ed.), Informatics: 10 Years Back,
10 Years Ahead. IX, 369 pages. 2001.

Vol. 2003: F. Dignum, U. Cortés (Eds.), Agent Mediated
Electronic Commerce I11. XII, 193 pages. 2001. (Subseries
LNAI).

Vol. 2004: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. Proceedings, 2001. XII,
528 pages. 2001.

Vol. 2006: R. Dunke, A. Abran (Eds.), New Approaches
in Software Measurement. Proceedings, 2000. VIII, 245
pages. 2001.

Vol. 2009: H. Federrath (Ed.), Designing Privacy Enhanc-
ing Technologies. Proceedings, 2000. X, 231 pages. 2001.
Vol. 2010: A. Ferreira, H. Reichel (Eds.), STACS 2001.
Proceedings, 2001. XV, 576 pages. 2001.

Vol. 2024: H. Kuchen, K. Ueda (Eds.), Functional and

Logic Programming. Proceedings, 2001. X, 391 pages.
2001.

Table of Contents

Invited Papers

The Metalanguage A-Prolog and Its Implementation 1
Gopalan Nadathur
A Scalable Architecture for Proof-Carrying Code 21

George C. Necula

Parameterized Logic Programs where Computing Meets Learning 40
Taisuke Sato

Functional Programming

Proving Syntactic Properties of Exceptions in an Ordered Logical

TEETIEMIONIE .« ¢ g p 1 2 975 5 8 5010 8 058 8 607 5 5,8 66 e i s i o m 5 500 6 53 0 K 5 0 B 1 05 6 61
Jeff Polakow and Kwangkeun Yi
A Higher-Order Colon Translationccooooiiiii 78

Olivier Danvy and Lasse R. Nielsen

Compiling Lazy Functional Programs Based on the Spineless Tagless
G-machine for the Java Virtual Machine 92
Kwanghoon Choi, Hyun-il Lim, and Taisook Han

Logic Programming

A Higher-Order Logic Programming Language with Constraints 108
Javier Leach and Susana Nieva

Specifying and Debugging Security Protocols via Hereditary Harrop
Formulas and AProlog — A Case-studycoouiieiei .. 123
Giorgio Delzanno

An Effective Bottom-Up Semantics for First-Order Linear Logic
Programs 138
Marco Bozzano, Giorgio Delzanno, and Maurizio Martelli

Functional Logic Programming

A Framework for Goal-Directed Bottom-Up Evaluation of Functional
Logic Programsooiiiiiiiiii 153
Jesis M. Almendros-Jiménez and Antonio Becerra-Terdn

Theoretical Foundations for the Declarative Debugging of Lazy

Functional Logic Programsoouiuiiiiia i, 170
Rafael Caballero, Francisco J. Lopez-Fraguas, and Mario
Rodriguez-Artalejo

Adding Linear Constrains over Real Numbers to Curry 185
Wolfgang Luzx
A Complete Selection Function for Lazy Conditional Narrowing 201

Taro Suzuki and Aart Middeldorp

X Table of Contents

An Abstract Machine Based System for a Lazy Narrowing Calculus 216
Teresa Hortald-Gonzdlez and Eva Ulldn

Incremental Learning of Functional Logic Programs 233

César Ferri-Ramirez, José Hernandez-Orallo, and Maria José
Ramirez-Quintana

Types

A General Type Inference Framework for Hindley/Milner Style Systems .. 248
Martin Sulzmann

Monadic Encapsulation with Stack of Regionso.... 264
Koji Kagawa

Well-Typed Logic Programs Are not Wrongcooovvii.. .. 280
Pierre Deransart and Jan-Georg Smaus

Program Analysis and Transformation

A Framework for Analysis of Typed Logic Programs 296
Vitaly Lagoon and Peter J. Stuckey
Abstract Compilation for Sharing Analysisccocovviiioii. ... 311

Gianluca Amato and Fausto Spoto

A Practical Partial Evaluator for a Multi-Paradigm Declarative

Languageoonoiii 326
Elvira Albert, Michael Hanus, and Germdn Vidal

A Simple Take on Typed Abstract Syntax in ML-like Languages 343
Olivier Danvy and Morten Rhiger

A-Calculus

A Simply Typed Context Calculus with First-Class Environments 359

Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama

Refining the Barendregt Cube Using Parameters 375
Twan Laan, Fairouz Kamareddine, and Rob Nederpelt

Author IndexX ...oiiiiiiii ittt ittt eeneeenenenenenenns 391

The Metalanguage AProlog
and Its Implementation

Gopalan Nadathur

Department of Computer Science and Engineering
University of Minnesota
4-192 EE/CS Building, 200 Union Street SE
Minneapolis, MN 55455
gopalan@cs.umn.edu
Home Page: http://www.cs.umn.edu/ gopalan

Abstract. Stimulated by concerns of software certification especially
as it relates to mobile code, formal structures such as specifications and
proofs are beginning to play an explicit role in computing. In represent-
ing and manipulating such structures, an approach is needed that pays
attention to the binding operation that is present in them. The language
AProlog provides programming support for a higher-order treatment of
abstract syntax that is especially suited to this task. This support is
realized by enhancing the traditional strength of logic programming in
the metalanguage realm with an ability for dealing directly with binding
structure. This paper identifies the features of AProlog that endow it
with such a capability, illustrates their use and and describes methods
for their implementation. Also discussed is a new realization of AProlog
called Teyjus that incorporates the implementation ideas presented.

1 Introduction

The language AProlog is based on the higher-order theory of hereditary Har-
rop formulas that embodies a rich interpretation of the abstract idea of logic
programming [18]. Through a systematic exploitation of features present in the
underlying logic, this language realizes several capabilities at the programming
level such as ones for typing, scoping over names and procedure definitions, rep-
resenting and manipulating complex formal structures, modularly constructing
code and higher-order programming. Our interest in this paper is in one specific
facet of AProlog: its role as a metalanguage.

The manipulation of symbolic expressions has been of longstanding inter-
est and some of the earliest computational tasks to have been considered and
systematically addressed have, in fact, concerned the realization of reasoning
processes, the processing of human languages and the compilation and inter-
pretation of programming languages. The calculations involved in these cases
are typically metalinguistic and syntactic in nature and a careful study of their
structure has produced a universally accepted set of concepts and tools relevant
to this form of computing. An important component in this collection is the

H. Kuchen and K. Ueda (Eds.): FLOPS 2001, LNCS 2024, pp. 1-20, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 G. Nadathur

idea. of abstract syntar that moves away from concrete presentation and focuses
instead on the essential relationships between the constituent parts of symbolic
constructs. A complementary development has been that of languages that pro-
vide programming support for computing with abstract syntax. These languages,
which include Lisp, ML and Prolog amongst them, contain mechanisms that sim-
plify the representation, construction and deconstruction of abstract syntax and
that permit the implicit management of space relative to such manipulations.
Effort has also been invested in implementing these languages efficiently, thereby
making them practical vehicles for realizing complex symbolic systems.

One may wonder against this backdrop if anything new really needs to be
added to the capabilities already available for symbolic computation. The an-
swer to this question revolves around the treatment of scope and binding. Many
symbolic objects whose manipulation is of interest involve forms of these opera-
tions in their structure in addition to the compositionality that is traditionally
treated in abstract syntax. This is true, for instance, of quantified formulas that
are considered within reasoning systems and of procedures with arguments that
are of interest to programming language compilers. The conventional approach
in these cases has been to use auxiliary mechanisms to avoid explicit reference
to binding in representation. Thus, reasoning systems eliminate quantifiers from
formulas through a preprocessing phase and compilers utilize symbol tables to
create binding environments when these are needed in the analysis of programs.
While such methods have been successful in the past, there is now an increas-
ing interest in formal constructs with sophisticated and diverse forms of scope
whose uniform treatment requires a reflection of the binding operation into ab-
stract syntax itself. The desire to reason in systems different from classical logic
provides one example of this kind. The elimination of quantifiers may either not
be possible or desirable in many of these cases, requiring them to be explic-
itly represented and dynamically treated by the reasoning process. In a similar
vein, motivated by the proof-carrying-code approach to software certification
[29], attention has been paid to the representation of proofs. The discharge of
assumptions and the treatment of genericity are intrinsic to these formal struc-
tures and a convenient method for representing such operations involves the use
of binding constructs that range over their subparts. As a final example, relation-
ships between declarations and uses are an important part of program structure
and a formal treatment of these in representation can influence new approaches
to program analysis and transformation.

Driven by considerations such as these, much effort has recently been de-
voted to developing an explicit treatment of binding in syntax representation,
culminating in what has come to be known as higher-order abstract syntaz [31].
The main novelty of AProlog as a metalanguage lies in the support it offers
for this new approach to encoding syntactic objects. It realizes this support by
enriching a conventional logic programming language in three essential ways.
First, it replaces first-order terms—the data structures of a logic programming
language—Dby the terms of a typed lambda calculus. Attendant on these lambda
terms is a notion of equality given by the a-, 3- and n-conversion rules. The main

The Metalanguage A\Prolog and Its Implementation 3

difference in representational power between first-order terms and lambda terms
is that the latter are capable of also capturing binding structure in a logically
precise way. Thus, this enhancement in term structure endows AProlog with a
means for representing higher-order abstract syntax. Second, AProlog uses a uni-
fication operation that builds in the extended notion of equality accompanying
lambda terms. This change provides the language with a destructuring opera-
tion that can utilize information about binding structure. Finally, the language
incorporates two new kinds of goals, these being expressions of the form VzG
and D => G, in which G is a goal and D is a conjunction of clauses.! A goal of
the form VzG is solved by replacing all free occurrences of z in G with a new
constant and then solving the result and a goal of the form D => G is solved
by enhancing the existing program with the clauses in D and then attempting
to solve G. Thus, at a programming level, the new forms of goals, which are re-
ferred to as generic and augment, respectively, provide mechanisms for scoping
over names and code. As we shall see presently, these scoping abilities can be
used to realize recursion over binding structure.

Our objective in this paper is to show that the new features present in AProlog
can simplify the programming of syntax manipulations and that they can be
implemented with sufficient efficiency to be practical tools in this realm. Towards
this end, we first motivate the programming uses of these features and then
discuss the problems and approaches to realizing them in an actual system. The
ideas we discuss here have been used in a recent implementation of AProlog
called Teyjus [25] that we also briefly describe. We assume a basic familiarity
with lambda calculus notions and logic programming languages and the methods
for implementing them that are embedded, for instance, in the Warren Abstract
Machine (WAM) [35]. Further, in keeping with the expository nature of the
paper, we favor an informal style of presentation; all the desired formality can
be found in references that are cited at relevant places.

2 Higher-Order Abstract Syntax in AProlog

A common refrain in symbolic computation is to focus on the essential func-
tional structure of objects. This is true, for instance, of systems that manipulate
programs. Thus, a compiler or interpreter that manipulates an expression of the
form if B then T else E must recognize that this expression denotes a condi-
tional involving three constituents: B, T and E. Similarly, a theorem prover that

! To recall terminology, a goal is what appears in the body of a procedure or as a
top level query and is conventionally formed from atomic goals via conjunction, dis-
junction and existential quantification. Clauses correspond to procedure definitions.
While a free variable in a clause is usually assumed to be implicitly universally quan-
tified at the head of the clause, there is ambiguity about the scope and force of such
quantification when the clause appears in an expression of the form D => G. AProlog
interprets the scope in this case to be the entire expression of which D => G itself
may only be a part, and it bases the force on whether this expression is a goal or a
clause. All other interpretations need to be indicated through explicit quantification.

4 G. Nadathur

encounters the formula P A Q, must realize that this is one representing the con-
junction of P and Q. Conversely, assuming that we are not interested in issues
of presentation, these are the only properties that needs to be recognized and
represented in each case. The ‘abstract syntax’ of these expressions may there-
fore be captured by the expressions cond(B,T,E) and and(P,Q), where cond and
and are suitably chosen function symbols or constructors.

Another important idea in syntax based computations is that of structural
operational semantics that advocates the description of computational content
through rules that operate on abstract syntax. For example, using as an infix
notation for the evaluation relation, the operational meaning of a conditional
expression can be described through the rules

B true T V
cond(B,T,E) V

B false E V
cond(B,T,E) V

Similarly, assuming that I’ — F represents the judgement that F' follows from
a set of assumptions I', the logical content of a conjunction can be captured in
the rule

r — P r — Q@
' — and(P,Q)

Rules such as these can be used in combination with some control regimen
determining their order of application to actually evaluate programs or to realize
reasoning processes.

The appropriateness of a logic programming language for symbolic compu-
tation arises from the fact that it provides natural expression to both abstract
syntax and rule based specifications. Thus, expressions of the form cond(B,T,E)
and and(P,Q) are directly representable in such a language, being first-order
terms. Depending on what they are being matched with, the unification oper-
ation relative to these terms provides a means for constructing, deconstructing
or recognizing patterns in abstract syntax. Structural operational rules translate
directly to program clauses. The evaluation rules for conditional expressions can,
for instance, be represented by the clauses

eval(cond(B,T,E),V) :- eval(B,true), eval(T,V).
eval(cond(B,T,E),V) :- eval(B,false), eval(E,V).

Using these rules to realize interpretation may require capturing additional con-
trol information, but this can be done through the usual programming devices.

2.1 The Explicit Representation of Binding

Many syntactic objects involve a form of binding and it may sometimes be nec-
essary to reflect this explicitly in their representation. Binding structure can be

The Metalanguage AProlog and Its Implementation 5

represented only in an approximate manner using conventional abstract syntax
or first order terms. For example, consider the formula VzP(z). This formula
may be represented by the expression all(z, P(z)). However, this representa-
tion misses important characteristics of quantification. Thus, the equivalence of
VzP(z) and YyP(y) is not immediately present in the ‘first-order’ rendition and
has to be built in through auxiliary processes. In a related sense, suppose it is
necessary to instantiate the outer quantifier in the formula Vz3yP(z,y) with
the term t(y). The renaming required in carrying out this operation has to be
explicitly programmed under the indicated representation.

The availability of lambda terms in AProlog provides a different method for
dealing with these issues. A binding operator has two different characteristics:
it determines a scope and it identifies a particular kind of term. In AProlog,
the latter role may be captured by a suitably chosen constructor while the ef-
fect of scope may be reflected into a (metalanguage) abstraction. This form of
representation is one of the main components of the higher-order approach to
abstract syntax. Using this approach, the formula VzP(z) might be rendered
into the term (all Ax(P z)), where all is a constructor chosen to represent the
predicative force of the universal quantifier; we employ an infix, curried notation
for application here and below as is customary for higher-order languages, but
the correspondence to the first-order syntax should be evident. Similarly, the
program fragment

lambda (z) if (x = 0) then (z - 2) else (2 * z)
in a Lisp-like language might be represented by the term
(abs Az (cond (eq x 0) (minus x 2) (times 2 z)))

where abs is a constructor that identifies an object language abstraction and eq,
plus, minus, 0, and 2 are constructors corresponding to the relevant programming
language primitives. As a final, more involve example, consider the following code
in a functional programming language:

fact m n = if (m = 0) then n else (fact (m - 1) (m * n))

This code identifies fact as a function of two arguments that is defined through
a fixed point construction. Towards making this structure explicit, the given
program fragment may be rewritten as

fact = (fizpt (f) (lambda (m) lambda (n)
if (m = 0) then n else (f (m - 1) (m *n))))

assuming that fizpt represents a binding operator akin to lambda. Now, using the
constructor fir to represent this operator and app to represent object language
application, the expression that is identified with fact may be rendered into the
following AProlog term:?

2 We are taking liberties with AProlog syntax here: the language employs a different
notation for abstraction and all expressions in it are typed. In a more precise presen-

