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INTRODUCTION

This book is devoted to the determination of the precise asympto-
tics for eigenvalues of certain elliptic selfadjoint operators acting
in fiberings over compact manifolds with boundary and for more
general elliptic selfadjoint spectral problems. The precise asympto-
tics for restriction to the diagonal of the Schwartz kernels of the
corresponding spectral projectors is derived too. These asymptotics
for closed manifolds were determined in author's paper [ 57] using the
same method; therefore oneccan consider ES?] as a simple and short in-
troduction to the methods and ideas of this book. More general re-
sults were obtained, for example, in [32 - 35], but with much weaker
remainder estimates.

In Part I we derive these asymptotics for the second-order ellip-
tic selfadjoint differential operators acting in fiberings over mani-
folds with boundary on which an elliptic boundary condition is
given; this condition must be either the Dirichlet condition or the
generalized Neumann condition; the latter means that the boundary va-
lue of the derivative of the function with respect to the direction
transversal to the boundary is expressed through the boundary value
of the function by means of first-order pseudo-differential operator
on the boundary; examples show that for more general elliptic bounda-
ry conditions our results may not be valid.

We shall derive the followi?f asymifotics for the eigenvalue dis-

. . . —,1
tribution function: N(K) -z, K*+ 0k ),

N(k) = Xy kd_i*’O(kd_z) or
N(k)=0)

where d/ is the dimension; the second asymptotics may occur only if
the boundary is not empty. It is impossible to derive stronger estima-
tes for remainder without some condition of global nature., For the
Laplace - Beltrami operator this condition is:

The set of all points periodic with respect to the geodesic flow
with reflection at the boundary has measure zero.

In a general case if certain strong conditions involving some glo-
bal condition are satisfied then the following asymptotics hold:

- - ) 2 4
NGO =,k +a, K o) o NGO =0 kT 2,k ok ),

Under gsome conditions the asymptotics for the restriction to the
diagonal of the Schwartz kernels of the spectral projectors are deri-



ved too.dInside these asymptotics have the same nature:

(:x;)k + 0 ( k ) or 0(1) but near the boundary the lea-
ding part of the asymptotics contains the term of boundary-layer type
of the order K'. If and only if this term exhausts the leading part
of the asymptotlcs then we have the asymptotics Pq(k)’=
2y k ot + O(k ) for the eigenvalue distribution functions.

In Part I the methods and ideas of ESG, 5?] are generalized and
improved upon and in Part II these methods and ideas are applied to
certein new situations and the results of Part I are extended to these
gituations. In §6 the asymptotics for the elliptic selfadjoint first-
order operators are derived. In 27 we derive the asymptotics for the
gpectral problem

S (pI+Auw=0

where A is the elliptic selfadjoint second-order positive definite
operator acting in the fiberingover amanifold with boundary and 3’ is
non-degenerate Hermitian matrix, acting in the fibers of this fibering.
The opposite case when } is positive definite A is not necessarily
positive or negative definite may be reduced to the case 3"‘]: in-
vestigated in Part I. In %8 we study the problem (*), when A and

J aiffer from ( A) (-A ) respectively only by lower order
terms where P> ay, and A is the Laplace - Beltrami operator.
We must note that the latter case is the most complicated and in this
case we need some improvements and modifications of our methods.

We intend to write a few papers in future; in these papers the
spectral asymptotics for global and partially global operators [62:]
and the quasiclassical spectral asymptotics for -(pseudo)-differen-
tial operators [63] will be derived and applications of these results
to the problem (*) where 3’ may degenerate in a definite manner, will
be given.
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Part I. THE ASYMPTOTICS FOR SECOND-ORDER OPERATORS

QO. Mein theorems

0
Oule Let X be a compact d—dimensional C -manifold with

the boundary Ye Coo s 22, doc a Coo—density on X , E a Her-
mltlan D-dimensional Cm—flberlng over X . Let A:(C° (X, B)-
—C (X E) be a second-order elliptic differential operator, for-
mally selfadjoint with respect to inner product in LQ(X,E) ;3 if
Y=@' othen j}, may be a classical pseudo-differential operator. Let
Y be a Cw vector field transversal to Y at every point, 7 the
operator of restrlctlon to Y B v or B=1V+ B'(, a boundary
operator, where B C (Y E)—»C (Y E) is a flrst—order classical
pseudo- dlfferentlal operator on Y ; certainly, only B but not its
components is an 1nvar1ant objecte vVe suppose that (E) « Operator
{ﬁ B} C (X E) “"C (X E) ® C (Y E) satisfies the éa—
piro - Lopatinskii condition; (S) J’L - the restriction of .k to the
Ket B (i.e. operator with the domain D(}p) =C (X E) N
N Ket B) is & symmetric operator in [, (X

Let A L, (X, E) — L, (X,E) be a closure of ﬁs in
L (X E) ; then A is selfadjoint, its spectrum is discrete, with
finite multlpllcity and tends either to * o0 , or to + o , or to
-00, Without the loss of generality one can suppose that 0 is not
an eigenvalue of A e« Then, if X is a closed manifold, then ﬂ
selfadjoint proj ectors to positive(negative) invariante subspaces of
AB are zero-order classical pseudo-differentia} operators on X .
If X is a manifold w:l.th+ boundary  then n belong to Boutet
de Monvel algebra, i.e. [] =117+ 11" where ﬂo' are zero-
order classical pseudo-dlfferentlal operators with the transmission
property on X and l_l are zero-order class.tlcal singular Green
operators (see [14] or %1 of this book). FI- - the principal symbols
of ﬂ - are selfadjoint projectors to positive and negative 1nva-
riant subspaces of O ; @ is the principal symbol of J’p « If M —O
then ﬂi is a zero-order classical singular Green operator. It
should be pointed out that for a more general boundary operator B
even satisfying the +éapiro - Lopatinskii condition, these statements
may not be valid: ﬂ_ may be operators of a more general nature;



are likely to belong to Rempel - Schulze algebra [83].

Let H ©be a closed subspace in |, 2(X,E) such that [1 -selfad-
joint projector to H - belongs to Boutet de Monvel algebra (if X
is a closed manifold then |_| is a classn.cal zero-order pseudo-dif-
ferential operator). We suppose that A ﬂ 3 this means
that H is an invariant subspace of A o Then A . H —4 H y
ﬂ)(ABH) = 9 (A ) N H - the restriction of A to H - is a
selfadjoint operator, its spectrum is discrete, with flnlte multipli-
city and tends either to ¥ , or to +o0 , or to -0 .

Let us 1ntroduce the eigenvalue distribution functions for
A N (k) N (k) is the number of eigenvalues of AB " lying
between 0 and +k ’

Let E(s) be spectral selfadjoint projectors of AB y E (s8) =
=[1E(s) and e () = +(Ey (tkH -Ey (0)) ; let e ¢, g ')
be Schwartz kernels of e’ (k) 5 then

+ + +
NH (k) =t%€H K = )S( e, (x, @,k dx .

We are interested in the asymptotics of N: (k) ana ei(:x,,oc,k)
as kK tends to 00 assuming, of course, that * A is not semiboun-
ded from above. B

0e2e Let A and a, be the principal and subprlncipal symbols
ot A , ﬂ— and [1 the principal symbols of M°° anda H €(9)
spectral selfadjoint projectors of (4 , 6 = (£(21)-€(0).

Oe3e We start from the results of [57:[ concernlng asymptotics
on closed manifoldse. One can assume that nn #O on some connective
component of T X\0 ; otherwise ﬂﬂ_ is of order (-{) , there-
fore I_H_] is finite-dimensional projector and tAB H is semi-
bounded from above.

THEOREM O.1. If X is closed manifold then the following asymp-

totics hold:

(0.1) N (k)—ae K +O(k )das k—>°° ’
(0.2) e (@, 3,k = &, (©K +O(k

as K =00 uniformly with respect to X & X,
where

z +
0.5 Ly @=| ¢ ds,

T, X



dg (Qﬁ)—d d§ ’ dg is the measure on T X , generated by
the natural measure docdg on T X and by flxed measure dac on X,
c,(, (®>0 ,on ) -comnective component of X , if T™*() N
cone swpp an ¢ ;s otherwise

(0.2) BH (x,x,k) = OU) as K— o0

wniformly with respect to xe ) ;

+ b +
(0.4) %, =St’(/cco(oc)doc =S tve dods.
X T*X

REMARK, If X is a manifold with the boundary Y then the asym-
ptotics (0.2) holds for gL eX\Y uniformly on every compact sub-
set of X\Y. + 0 +

REMARK. It is obvious that d, eC ; all coefficients o(/—(ill)
which will be introduced in future will also be smoothe

To obtain the second term of the asymptotics for the eigenvalue
distribution function we need gsome condition of a global character.
Let 0 < 512 < 53 s .. -S@' , be all the positive eigenvalues of
+q 3 D; may depend on con.nectlve component of T X\0 . Let
.i be a conical with respect to § closed nowhere dense subsets
of T*X\0 such, that for everyJ 6j has the constant multiplici-

ty outside of Z : thls multiplicity may depend on the connective
component of TX\O\Z— o These subsets exist without question.
Consider the blcharacterlstlcs of O] -~ the curves along which

dp H(p), P=P(UET*X\O\Zj

-2 Ly B2 -
where OF ax ax g 0% is the Hamil-
tonian fleld generated by .‘)Q « (I bicharacteristic is called periodic
if there exists 1T #(0 such that P(t*T)=P(t) ; T is called the
period of bicharacteristice.

THEOREM 0.2. Let X be a closed manifold and the following con-
dition hold: +
(H1). There exists a set A of measure zero, U Z CA ?
= ']" X\ 0 , such that through each point of T'*X\O\A_
for every J there pesses & nonperiodic bicharacteristic of 61
lying in T X\ 0\ Z- , which is infinite in both directions.
Then the following asymptotlcs holds:

0oy N = ke Kol kK—=c0



S tws(‘fa) Hﬂ adacd§+ae .
Ty X

REMARK. If A is .8 differential operator and ﬂ(.’l} -3)=[1(x, 5),
then @ =( where 81 depends only on @, (see Appendices D, F

O 4. Now let X be a manifold with the boundary. Let J),G:C

=(0 and dm =0 at Y, X>0 in X\Y . Consider the characte-
rlstlc symbol %+ 2 T) —det (’U’ZI Cb(p))

DEFINITION. The point peT‘ X\Y has the multiplicity

b=0.Cp) it ,
<§%>9}qxtﬂmﬂ =0 Vi<l

4
—3 l
0,9~ (37) 9.0 _
DEFINITION, We shall say that the point pc-:T X'Y \0
with [ =0y (p)=1

(i) is positive if

#0.
f

oty
et(9)<fﬁ) (a_g',) %t(p’1)|r=1>0
Vi=0,...,0-1;

(ii is negative if

6 (p)<0't>( ) G
Yi=o0,...,0-1;

(iii) is tangential if

BN
(%) <6?_§,) % (P’T),w -

Vi’= O"'-y 8'1'7
(iv) is indefinite in the remaining cases.
Here §4 1» the dual to 51}1 variable, ﬁ=—ch1-
Let J T X IY 'T' Y be a natural mapping.

THEOREM O.3. Let ﬂﬂ be not a singular Green operator (i.e.



+

Théi %he)asymptotlcs (O 1) holds with the same coefficient 2%0_

THEOREM O.4. Let IWIW be a singular Green operator. Then the
following asymptotics holds:

+ £ 4 d-2 ¥ *)
0.1 Ny(K=a k +O(k ) as k-—=eo
+

where C)<894 depends only on 04Y and on (nn ) - the prin-
cipal symbol of singulaer Green operator (r]ﬂ ) 3 E is the

principal symbol of B,

0e5. To obtain the second term of the asymptotics for the eigen-
value distribution function we need some condition of a global na-
ture,

Suppose firsgt that

4
(m2) Gy (pT) =T~ p(p) b (p1),

where j&q» = W(x,5) is a positive definite quadratic form in §
(ieee 2 Riemannlan metric on X ) and h(p T) does not vanish,

Then on S X -tangent spheres bundle of the Riemennian manifold
X (more precisely on its subset of the complete measure) one can
define a continious measure - preserving_geodegic flow with reflec-
tion at the boundary, More particulary: con31der S*X with iden-
tified points P and p/ such that Jf)—-JP

By a_geodegic we mean a curve lying in S X , along which

d
T = % ()
(i.e. the bicharacteristic of(5 Vr_ ); the geodesic, minus, per-
haeps, its endpoints, must lie in S (X\Y) ?  (the length) is
the natural parameter along the geodesice.

By a_geodegic billiard we mean a curve lying in S X congisting
of segments of geodesics; the endpoint of the precedent segment and
the starting point of the consequent must belong to S*X ‘Y and
be equivalent (i.e. identified); t (the length) is the natural para-
meter along geodesic billiards. *

It is easy to show that there exists a set Z: =4 X , of
first Baire category and measure zero, such that through each point
of X\ X a geodesic billiard of infinite length in both direc-
tions can be passed in such a way that each of its intervals of fi-

*) Here O(ko)é;—g 0 (nk)




nite length contains a finite number of segments, and all the geo-
desics included in it are transversal to the boundary. Thus, on )

We call a point [ ES X\ > periodic if there exists a [+ 0
such that (D(T)P=p T is the period of point P

THEOREM O.5. Let ﬂﬂ be not a singular Green operator and con-
dition (H.2) be satisfied. Assume that the set of periodic points has

SX\Z a continuous measure - preserving flow P is given,

measure zero. Then the following asymptotics holds:
+ - 2 d + //i‘ d/—1 d—1
©0.5) N, (K) =@ k+(z+2, )k +ok )  k-—=oo,

+ as 0t

where %4 are given by (0.4), (0.6), ¥ depends only on a,y,
b, nn® y , (NN )

0.6. As we mentloned above, the asymptotics of eH (x,x, k) near
boundary has a more complicated character. Let us identify some neigh-
bourhood of Y with [O 5)XY then/ point L will be identified with
(@1,$)where &y is such as above, €Y . If condition (H.2) is sa-
tisfied then X 1is a Riemannian manifold and this identification is
canonical, X;= dist (x, \_/)+

THEOREM O.6. Let [][1~ ©be not a singular Green operator and con-
dition (H.2) be satisfied. Then in neighbourhood of Y the following
asymptotics holds:

+ + r d d-1
(0.8) € @, k) =Cd, (@t G, @, k)k +Ok )

i
as K—>00 uniformly with respect to X , where dy, (L) 1is given by
(003), * [o.¢] — +
G, €C (YxR), 4+
oC/ t + / 2
(0.9) D, 0 G (x,6)=0(s" )

as §—>00 uniformly with respect to CCEY for every o(/, t .

THEOREM 0.7. Let [|[]~ ©be not a singular Green operator and the
following conditions be satlsfled.
(He3) For every point p ET Y\O we can find f€R such that at
all points of J 1p* ﬂ{ Qri (p, D= 0} the following inequalities
hold:

*) The simple proof of these statements is published in [21] s
coincides with the unpublished proof by the author [56].



P 5 b
0100 6. (P)(gr) (5t *GiMgs,) 9= (PO _ >
Vi=0,...,0-1; b="0,(p;

/
(Ho4) §1=>\L(Q},§/)- all real roots of the g't (x,5,5451) - nave
/
constant multiplicities in the neighbourhood of N*Y={a;4=§=0} and
0\ .
(0.11) =% ; do not depend on ¢ ,
K Xy=%=0

(0.12) &gn)\ < m, )
05,05, | g =¥=0/ w,b=2,....d

are negative definite (d/ 1)X(d/ )—matrlces.
Then for d/>3 the asymptotics (0.9) holdsj; for d, =2 the following
asymptotics holds:

+ * & / 2 %
(0.8) e (X, k)=, @)+ Q, @, x,k)k + O(k")

as k——)—OO

uniformly with respect to &, where Q, satisfies (0.9).
REMARK. In theorems 0.6 +O .7 Q ((I} *) depends only on G(0, CT/ ),
%({I, ), AN (O a‘,, ), (ﬂﬂ ) (x” ) . Moreover

. . /
%, =S 5 12 O, @,s)ds da
0
where d:v/— dan' is a Coidensity on Y.

COROLLARY,., If the conditions of the theorem 0.6 hold or if the
conditions of the theorem 0.7 hold and d>3 then the asymptotics
- +
(0.2) holds outside the bi)_undary layer @4\ < k -0/ 1)

THEOREM O.8. Let ﬂﬂ— be a singular Green operator but not a

smoothing operator. Then the following asymptotlcs iolds
+1{

(0.13) e (x,x,k) = de (, x,k)+O(mm(k )

as K—= 0o

formly with respect to @

where uajazec (Y IPV) o
(0.14) ‘D ’D @ (x,s) =0(5 )

7 .
as 5—>®uniformly with respect to xeY for every o s 13



8

+ -
G, (CI'/:') depends only on OV(O,J}/,') p 6 . ’ nn ("I//) . Moreover,
(Y] ) 0 ’
+ w

% =] j 12 @j@', s) dsda’ .

It is interesting that on Y € (CX},Q",,k) has degree-~like asympto-
tics again. n

THEOREM O.9. Let ﬂﬂ be not a smoothing operator and B= i/‘(/{D4+
+84‘(/ . Then the following asymptotics holds:

T 7 iE
(0.15) € (x,2,K)=d, (@k +0k )

L+ 88 K=>00 uniformly with respect to QE}/ +/
whered, (X) depends only on WX, , 8(:6,) , o= (x,), (ﬂ [ )O(J'/,)

REMARK. In reality theorems 0.,6-0.9 have the locil character and
therefore if we wish to derive the asymptotics of € ~(&,X,k) on some
subset ()= X then we need the fulfillment of conditions of these
theorems only on any.

OeT7e As an illustration we shall consider the Laplace - Beltrami
operator (or its certain generalization) on the Riemannian manifold
with the boundary.

Thus, let X be a compact Riemannian manifold with the boundary
Y s d(}‘, and dw’ be natural measures on X and Y respectively, E
a Hermitian fibering over X . Let Jb: COO(X, E)»COO(X,E) be a formal-
ly selfadjoint differential operator with the principal part —AI ,)
where A is the Laplace - Beltrami on X 5 Id E—>E is the identical
mappinge. We denote by AD ’ AN s AG an operator AB if the boun-
dary operator is B=1, B= ‘(/a—aﬂﬂ,y‘(,, B =’(,a_n+(4'/97 + B4) t respecti-
vely where 4 is the interior unit normal to Y sy Y is a smooth mat-
rix such that AN is the selfadjoint operator, 84: Cw(Y’E) —

Cm(Y,E)is a first-order classical pseudo-differential operator on
Y with the principal symbol f . Then Ag is selfadjoint if and
only }f B‘ is symmetrice. LetﬁK(k=f,,,,,D) be the eigenvalues ofﬂ
Then Sapiro-Lopatinskii condition means precisely that

x
(0'16) ﬁK#1 on SY Vk=1,'--;D.
When (0¢16) holds then AG is semibounded from below if and on-
1y if
*
(0.17) B.<t om S5Y Yk=1,...,D.
Let ﬂ=I « One can concretize the statements of the theorems

0-3, 005, 006, 0e9:
THEOREM 0,10 (i). The following asymptotics hold as K-—>00;:

*
) Cerw‘;(ainlDy, -AId is not an invariant object ixcept in the case of
=Xxg"




N' (= at+ K¢+ 0 k¢, L
¢ (2, k) = (& + Q) (), 23 K+ O (K "y,

where &g t—(Qmy COdDﬂOEX o(, =(7) wyId ,» W, is the volume of
the unlt ball in ]R , 4
-a+

Q 2 X
(x,5) =(2m) g‘“ 1 (B.9)de

d,G is the Lebesque measure on

5 =6, p-p@.e),

Ky (p.s) = cia
(+u) * Aﬂ | -isw
="le;g<tu7+ﬁ\/—2)(tul+ﬁ\/_w2) G (D) L6 ) dus

for A= AG’

d-3
Ty -isw

1 2, 2 ~d d d-
Hy(9)=*% —g;§(4—w) Ciw) (35) s(e D dw

for A= A and A= A ; here and below, the s:Lgns (+) and (-) corres-

1

pond to A AN and A AD respectively, Re (1-w ) /2>0 , ¥ is a
contour with the starting point -1 and the endpoint +1 lying in the

¢ e 2
lower complex half-plane Re W/<(Q below all points W, bﬁK/\M—ﬁK
with 0< B, <1,
(ii) Assume that the set of points periodic with respect to geodesic
flow with reflection at the boundary has measure ze o. Then the fol-
lowing asymptotics holds: N (k)= t k + @ + o(k )
as |<—>oo, where

d-3

4
on . I, T
% - ;W?DSL §m<-m+pv—4—w2) GupF@X-wd’ W dwdedy

~d+1
tor A=Ag » @=ta(2m) @y uolYor A=A ana A=A,

COROBLAIRES AND REMARKS.

(i) As before it

Ky (p.5) =0(s *) as 5 —=teo,

(ii) The following asymptotics holds as & —=—+ 0O



d+2
%y (5,5 =i T 27 cos (s~ (d-3)+ 05 )
ror A= AG’ d+4 _d+3
Ky (o=t T(5H27 cos(5-E(d-3)+ 0(s 2
for A A and A AD ; therefore on the greater part of boundary
layer we can gimplify the expression for @,0

(ii1) 12 o is odddthen for A Ay and A=A,
0 2 SNS |

Q, (=202 * (% 35)" 2

(iv). It d is evin then for cHA4=A and A= A 9
G (o=*202m" (‘g%)gg (s”gg”s B ')(4— ') dw
-1

(v) The asymptotics (0.15) holds with

d-3

oc’:=(23v—)d 1%-&—&_8 b g )(vuﬂj&\/_ () dwde}
5

-d

in particular, o(,/0+=2 (29) W], Id for A= AN .
(v1) Degree-like and boundary layer type terms in asymptotics for
e ((X} a) k) generate the first and the second terms in the asymptotics
for N' (k) (after integrating with respect to da ), but the asymp-
totics for N (k) with the second term does not follow from the asy-
mptotics for 8 (x, x,K).
(vii) If 3 is odd with respect to € , then

_d+4 d,+

1
(QJI) w uoh{+2f3 4%)—)5(4 )" deda’ .

One can concretize the statements of the theorems 0.4, 0.8 and
0.9 againe.
THEOREM O,11. The following asymptotics hold as K—=>o00:
~ _ dH d-2 .
N(K=2k +0k ), )

*) Here O(ko)=0(4) .




