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PREFACE

The role that university mathematicians can play in solving
problems from real life has been the subject of discussions, round
tables and symposia which are becoming more and more frequent. Cer-
tainly this matter does not belong specifically to our days: there
are so many instances of illustrious mathematicians of the past who
have used or even created mathematical tools for investigating pro-
blems of engineering, physics, chemistry, biology etc. The reason for
such growing interest lies on the one hand in the increasing complex-
ity of technological problems which require more mathematics, and on
the other hand in the fact that university mathematicians are gra-
dually rediscovering applied sciences as an inexhaustible source of
appealing and challenging mathematical problems.

This set of CIME Courses demonstrated effectively such traits of
so-called Industrial Mathematics. The lecturers are well-known mathe-
maticians with a very large experience in the application of mathema-
tics to problems submitted by industrial companies.

They described a variety of problems arising in different fields.
All of them being brilliant teachers, their lectures were highly
stimulating and very appropriate to illustrate one fundamental point:
Industrial Mathematics IS FIRST OF ALL MATHEMATICS, not just model-
ling (although the role of mathematicians is often crucial in this
stage), not just computing (usually the final stage of such kind of
research), despite the fact that often a theorem has to be trans-
formed into innovative software in order to become the terminal pro-
duct "sold" to the company.

We are proud to have organised this CIME Session and we thank the
Director and the staff of CIME for their support, and TECNOPOLIS for
having offered the lecture room as well as financial and logistic
help.

We are extremely grateful to the lecturers for their efforts in

selecting the most appropriate material and for drawing such a clear
picture of what Industrial Mathematics is today.

Vincenzo Capasso Antonio Fasano
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Industrial Mathematics

What is industrial mathematics?

I am not sure who was the first to come up with the term industrial mathematics. The
first time I heard it was during a visit to Bell Labs in Murray Hill in the summer of 1974.
People like Henry Pollak of Bell Labs or Murray Klamkin of the Ford Motor Company
used it freely in various publications. It is possible that the term was already used by Fry
who headed the Math group of Bell Labs before WW II. Of course, the '’ in the acronym

SIAM stands for industry. Yet, most members of that society are applied mathematicians



in the sense I shall define later on, rather than industrial mathematicians. When 1 sub-
sequently mentioned the term in Europe, people looked at me in disbelief and dismissed
it as an objectionable americanism. However, as happens over and over again with ne-
ologisms that seem to meet an existing need, the term was eventually widely accepted,
also in Europe. Many universities have since created chairs of industrial mathematics.
Societies such as ECMI (European Consortium for Mathematics in Industry) have been
founded which profess their devotion to the application of mathematics in industry.

Hearing the expression ’industrial mathematics’ for the first time, one can justifiably
ask oneself whether this means anything different from the mathematics people use in
non-industrial circles. In general, one should say, mathematics, whether this be topol-
ogy or numerical analysis, does not depend upon the place where it is practised. The
response of the industrial mathematician will be that the term does not specify a novel
kind of mathematics, but rather emphasizes the fact that the application of mathematics
in non-mathematical disciplines is the central theme. First, there is a problem arising
outside mathematics and then whatever mathematics is needed is brought to bear upon
it. Here mathematics is not a goal in itself, but rather a means to get answers in a non-
mathematical world. Industrial labs such as Bell Labs in America or Philips Research
Labs in Europe and, of course, there are many many more, are devoted to fundamental
and basic research in many non-mathematical areas. Nevertheless, this makes them into
veritable feeding grounds for the application of all kinds of mathematics.

Of course, the term ’applied mathematics’ has been known to us for a much longer time
and there seems to be good reason to question the necessity of introducing yet another
expression for an activity which seems no different from ordinary applied mathematics.
I feel that an explanation can be given when we consider the historical development of
mathematics. Mathematics came into being because man felt the need to better govern
the world around him and to improve his ability to predict phenomena that determined
his life. Geometry was created in ancient Egypt for people to be able to cope with the
problem of finding again each plot of land after the annual flooding of the Nile. The
ancients of Mesopotamia were masters at devising tables with which they could predict
conjunctions of the planets which, so they believed, determined the fate of nations. We
shall not elaborate on this issue here. It should be clear, however, that these early, anony-
mous mathematicians were also physicists and engineers avant la lettre.

It would seem that this situation persisted until quite late in the nineteenth century.
Great mathematicians such as Newton or Euler relied heavily on what they saw in the
world around them for their mathematical inspirations. Indeed, it is very difficult to dis-
tinguish between Newton the Physicist and Newton the Mathematician. Mathematicians
regard him as one of their leaders, because he is the (co-)inventor of differential calculus.
Physicists call him their greatest on account of his three famous laws of mechanics. His
Principia is good reading for physicist and mathematician alike. Only late in the nine-
teenth century do we see the emergence of a breed of investigators that we now call pure
mathematicians. These people seem to be interested solely in the axiomatic worlds they
themselves created. For their inspiration they do not rely on the world in which they live,
but only on the world in which they think. This development ultimately leads to the likes
of G.H. Hardy, who complimented himself on never having achieved anything of practical
value, and Paul Halmos who tried to convince an audience that any mathematics that



can be applied is dirty or ugly by definition. Quite amusingly, the fact of the matter is
that most, and perhaps all, mathematics such people create is or will be used eventually
by others to elucidate real-world problems. Sometimes this happens so fast that they live
to see it.

This development of mathematics from applied to pure, which meant a turning away
from the real world, an introspective move so to speak, did not mean that the application
of mathematics got into low gear. On the contrary, many fields of science which had
always had a verbal character to them, meaning that their truths were presented in plain
language, were rapidly mathematized. However, people who called themselves mathe-
maticians seemed to lose touch with this development. This game is now played by the
physicists, the chemists, the engineers themselves. In the meantime, the mathematicians,
at least the purer ones among them, are dreaming away in a world of their own making.

The central tenet of pure mathematics is formal proof. The sentiment about formal
proof has become so strong among pure mathematicians that many of them will not ac-
cept as true any mathematics which has not stood this test. The difficulty is that most
of the problems which arise outside mathematics are so complicated that it is impossible,
at least for the time being, to give formal proof. As an example we could mention the
mathematics that is used to describe flows around aeroplanes. Long before a real aero-
plane is actually flown, its mathematical model has already been tested to the full. It is
unthinkable that any modern aeroplane could be developed without the aid of extensive
mathematical modelling. Yet, the correctness of these models has not been fully estab-
lished. Even so, mathematicians, both pure and applied, use these machines for their
long-distance travels. Only a handful of them will question the unproven safety these
vehicles afford.

Who then are the inheritors in our day and age of the long tradition that began
with our anonymous friends of the Nile and the Euphrates, all the way to Newton, the
Bernoulli’s, Euler, etc.? Indeed, there are such contemporaries, but if there had been a
Nobel prize for Mathematics, which there is not, thanks to the strained relations between
Nobel and Mittag-Leffler, then these people would not be among the laureates, for the
simple reason that they would not be recognized as mathematicians. I mean people such
as Theodore von Karman and Geoffrey Taylor. The first of these applied his mathematical
genious to almost every branch of engineering science. The same is true for Taylor who
also had a knack for doing beautiful experiments and making simple but very elucidating
mathematical models for them. We could also think of someone like John von Neumann.
Pure mathematicians also regard him as one of their heros. Contrary to Hardy or Halmos,
he also used his enormous talent to clarify problems emanating from other disciplines.

Again, I pose the question: is industrial mathematics any different from applied math-
ematics? No, not if we mean applied mathematics in the classical sense, linked with names
such as Newton or Taylor. Of course, in the old days there were no industries to speak of,
at least not ones that needed mathematics on a large scale. Modern industries are simply
concentrated worlds within our world, where all kinds of problems arise that mathematics
may be successfully applied to. Archimedes, Huygens, Newton would probably have taken
a great interest in them. In principle, the manner in which mathematics is applied in these
industries is not different from the way the classics operated. The difficulty with the term
applied mathematics is that it is used nowadays to signify a different activity. Someone



who studies properties of differential equations, although he/she may never solve a real-
world problem, is called an applied mathematician, for the simple reason that differential
equations are used to tackle problems arising outside mathematics. The same is true for
someone interested in operator theory, Lie groups or numerical analysis. Clearly, in this
sense applied mathematics is concerned with problems that arise within the mathematical
world itself. It goes without saying that the fruits of this type of research are very useful
for those mathematicians who tackle real-world problems.

Henry Pollak of Bell Labs distinguishes five stages in any separate activity of an in-
dustrial mathematical nature, which I shall repeat here in my own phraseology.

e Stage 1, a problem arises outside mathematics.

This is the interface of mathematics and the real world. It often happens that the
mathematician working in industry is approached by one of his/her non-mathematic-
al colleagues who puts a technical problem before him/her. By problem I do not
mean that the person in question wants to solve a differential equation or evaluate
an integral. Of course, occasionally the industrial mathematician may help out with
problems such as these, but this is not what he is in industry for. No, by technical
problem I mean that the colleague describes a phenomenon or an experiment, and
that he/she feels that the situation may be clarified by bringing mathematics to
bear upon it. During this first encounter the discussion will be conducted mostly in
ordinary language, although it may be interspersed with the jargon of the field the
technical problem arose from. Depending upon the mathematical skills of the one
who brought the problem, the discussion may take a mathematical twist. It should
be clear that one of the prerequisites for this encounter to lead to any success
or progress is that the industrial mathematician must be able to understand the
language of the person who consults him/her. If his/her head is always high in the
mathematical clouds, he/she will probably fail as an industrial mathematician. The
successful industrial mathematician must therefore be interested in at least a few
disciplines other than mathematics itself.

e Stage 2, mathematical modelling.
This is where the original technical problem is cast into mathematical terms. I shall
devote a separate section to describing what [ think a mathematical model is all
about. Let me state here that there is not one single mathematical model for each
particular technical problem, but that we have a whole hierarchy of them. Aris
describes this at length.

o Stage 3, the analysis of the problem.
The purpose of the model is to obtain understanding. This understanding is ob-
tained by analysis. These days, with all the computing power available, many
industrial mathematicians are tempted to take the model to the computer as fast as
they can, churning out numbers in endless series. Because these computers are so
powerful, there is a tendency to devise models of ever-increasing complexity. The
world models developed by economists are good examples of where this trend may
lead us. Many hundreds or even thousands of parameters can be varied simulta-
neously, yielding a multitude of different answers. Although it is possible that this



is sometimes the only realistic way to proceed, I should like to state here that a
professional industrial mathematician ought to postpone the use of the computer as
long as he/she can. First, he/she should apply all the mathematical craft he/she
can muster to work with the model, to modify it, to reduce it, to simplify it. If
the primary model is dimensional, render it dimensionless. Then look at the dimen-
sionless parameters. Are they small or large? Can the model be reduced by means
of asymptotic methods? If the model is too complicated, can a simpler model give
some clues? And so on and so forth.

e Stage 4, numerical evaluation of results.

Except in the simplest of cases most models will eventually require the use of com-
puters. This can be a simple matter of evaluating the value of an integral or an
infinite series, or it can be a very complicated exercise in finite elements. In any
case, the problem that is taken to the computer should be well balanced and com-
puting time should be used economically. For instance, if someone has to calculate
the value of a slowly-converging series which needs the evaluation of, say, one mil-
lion terms to reach four-digit accuracy, then he/she has a very lazy mind if he/she
writes a direct algorithm. First, one has to investigate whether convergence can be
accelerated.

e Stage 5, communication.

Since the problem came from outside, the results have to be returned to the out-
side world in a way that can be understood by outsiders. This aspect is neglected
in many works which pretend to be applied or even industrial mathematics. Most
mathematicians are happy and content when they have solved a problem their way,
meaning that they have finally produced an intricate formula, a nice algorithm or
splendid proof. However, this language is rarely understood by non-mathematicians.
The successful industrial mathematician, on the contrary, will spend a great deal of
his/her energy on making clear graphs, fine tables and a lucid verbal description of
the results obtained. An accomplished industrial-mathematics report will contain
a clear description put in ordinary language of the problem to be tackled. Then
follows a description of the model and a sketch of the methods that were used to
obtain the solution. Extensive calculations which would not interest anyone but
the real experts are best reported in appendices. The report ends with one or two
sections on results and a discussion of the results. Again the emphasis should be on
the use of ordinary plain language.

What is a mathematical model?

A mathematical model is an imperfect image of a part of the world around us, in which use
is made of mathematical symbolism. The model employs mathematical representations of
the basic laws of nature, for instance the conservation laws. In this respect it may be useful
to remark that the word 'nature’ is to be interpreted in the widest sense possible. It is not
restricted to what physicists understand by nature, but it includes also things abstract; to



put it shortly, everything our brain can grasp. As a special feature, a mathematical model,
despite its imperfections, provides us with an insight into those parts of the 'world’ which
are inaccessible to us, either for the time being or permanently. Mathematical models
have been made to describe conditions in the core of the sun or the earth. Clearly, we
shall probably never have bodily access to those parts of the world, and neither will it
be possible, at least for the time being, to carry out experiments there. Nevertheless,
we feel that these models enable us to predict what happens in those remote places.
Mathematical models are also helpful in predicting things which are still to happen, to
predict future occurrences, so to speak. According to a set of assumptions, different
scenarios are presented to politicians, managers, the military, whose decision on what
course of action is to be taken depends upon what the models foretell.

We have already pointed out the imperfection of mathematical models. This has to do
with the fact that in building such a model we can represent only a very limited number of
aspects of the part of the world we wish to know more about. Depending upon whether
our approach is cruder or less crude, we may refer to our models as very imperfect or
less imperfect. The euphemism ’refined’ is sometimes used for models which, in reality,
are only less imperfect. However this may be, it should be clear that each part of our
world can be modelled in a great many different ways. In each particular instance we can
distinguish a complete hierarchy of mathematical models from crude to refined. The level
of refinement we can reach may depend upon the time we can spare, upon our financial
means and, last but not least, upon the limitations of our brain power.

Apart from mathematical models we also know physical models. Whereas with a
mathematical model we are concerned with an abstract representation of some part of
our world, be it abstract or tangible, a physical model is a tangible representation of
a tangible part of the world. That particular tangible part of the world is copied on a
reduced and simplified scale. Architects use such models. Civil engineers have a great
tradition in this particular area. They have earned themselves fame with their physical
models of tidal systems for low-lying coastal areas. Sometimes the sizes of these models
are gigantic, occupying many thousands of square metres. Nevertheless, despite the great
sums that are spent on these physical models, they do have very definite drawbacks.
The most important of these is that it is never possible to scale down all variables of
the modelled system in the same fashion. For instance, for practical reasons the rivers
in the aforesaid tidal models are always much deeper than they ought to be. If these
depths were modelled to scale, then the surface tension of the water would affect the
working of the model in an intolerable fashion. Scaling up and scaling down are very
tricky operations. It is precisely through the study of mathematical modelling that we
know that a scaled-down version of a physical reality can be in a theoretical regime which
is completely different from that of the physical reality itself. Of course, nature itself has
known this all along: There is no such thing as the one-millimetre elephant, nor is there,
contrary to what some science-fiction movies would have us believe, room in our world
for the one-metre ant. Be this as it may, it would seem that physical models are things
of the past. Yet, with man’s disposition being such that, on the whole, he is inclined to
favour things tangible, these physical models are likely to remain with us for a long time.

We remarked earlier that in making a mathematical model we adopt a selection process
in which only certain attributes of the world around us are seen fit to be represented in



the model, whereas others are left out of consideration. For the latter we use the word
‘neglected’. It often happens that after the model has been set up, the process of neglecting
certain effects is carried still further on the basis of a process of mathematical reasoning
conducted within the model. Although after the making of the model, physical reality is
represented by a purely mathematical object which, strictly speaking, we can talk about
in mathematical terms only, it can sometimes be helpful to refer back to the physical
reality the model is thought to be an image of. We have to be careful, however, not to
refer to physical entities that are not represented in the model. This would seem to be
a matter of course. However, the following anecdote serves to show that confusion can
arise if one is not careful in one’s reasoning:

A mathematician working in industry had made a model for the diffusion of electrons
in a layer of a few thousand angstréoms. In his model he made use of the well-known
diffusion equation for continuous media. This would seem a reasonable thing to do for
a layer that was many thousands of atoms thick. He presented the fruits of his research
to an audience that was composed mainly of physicists. He told them that he had used
finite differences to solve the problem and that he had found it to be necessary to divide
the layer into many thousands of subintervals in order to attain the required accuracy.
Someone in the audience questioned the validity of the model, since each subinterval was of
subatomic length. Continuous models are not valid then. This remark baffled the speaker,
who could not come up with a convincing answer. The audience left the lecture room,
being more convinced than ever that these mathematicians had nothing useful to offer.
Of course, after a moment’s thought, the correct answer is easily found. The subdivision
of the interval occurs within the mathematical model. Although the subintervals are
deceptively like atoms, they have nothing to do with them. If the physicist agrees that a
continuous model is valid when the modelled physical entity contains many thousands of
atoms, then a mathematician can prove to him that the solution to that valid model will
be approximated more and more accurately when he applies finer and finer meshes.

Finally we should be careful not to overestimate the power of a model and not to be
too absolute about the results derived from it. The model is as good or as bad as the
assumptions on which it is founded. If it is at all possible, one should test its validity
by means of experiments. In the event that the quality of the results is inadequate, one
might consider refining the model. Of course, all depends upon one’s goals. If one’s goal
was the procurement of qualitative insight, for instance about the direction in which a
process will run or about the order of magnitude of certain effects, then a crude model
may do. If one needs numerical answers that have a certain measure of accuracy, then one
may opt for mathematical models that are of the less imperfect kind, refined if you like.
A report which appeared in the Dutch newspaper NRC Handelsblad on October 29, 1986,
is quite illustrative in this respect. The newspaper article dealt with some unexpected
flow levels in a newly dug canal in the south-west of the Netherlands: I shall present an
English translation of the Dutch original:

Shipping in the Rhine-Scheldt canal is severely hampered by unexpectedly high flow
velocities in this canal. These result from the closing last week of the Oesterdam (Oyster
dam) between Zuid-Beveland and Tholen ...

... Mr. Hamer (M. Eng.) of the Ministry of Public Works said this morning that computer
models have led him to expect that the flow velocities would have increased from 0.5



metres per second to 1.5 metres per second. Now this has turned out to be 2 metres per
second. This can cause problems, since the transport of soil from the canal bed increases
disproportionately. In the calculations use was made of both a physical model and a
one-dimensional mathematical model. Hamer felt that it would be unjustified to state
that the models were flawed or that nature had played yet another trick on technology.
”We shall proceed by organizing all our data and making the right comparisons. Only
then shall we be able to draw the right conclusions”, he said.

His remarks about the surprises nature has in store for us show that Mr. Hamer seriously
overestimated the power of his mathematical models. Of course, it is quite inconceivable
that one should be able to simulate accurately a flow system as complicated as the Rhine-
Scheldt delta by means of a one-dimensional model. Qualitative answers are the best one
can expect from such a simple model. On the contrary, it is surprising that the Public-
Works people, using their simple model, should have been able not only to predict the
direction in which the flow field would change, but also two-thirds of its magnitude. This
is ample evidence of the expertise these people have acquired over the years.

What about a lecture series on industrial mathematics?

I have been asked to say a few things here in Bari about the application of mathematics
in industry, so as to give the audience an idea of what industrial mathematics is all about.
From what I have said up to now it should have become clear that this is an impossible
task. In principle, the subject encompasses almost everything the human mind can think
of. It is not for one person to present an overview of such a wide field, and certainly not
if he is allowed only one week to do it in. All I can do is talk about a few things that
have come my way. Next year when you invite someone else, you will hear a completely
different story. But then, looking at one painting will not make one an expert on painting,
nor will reading one poem transform the reader into a master of poetry. Of course, if you
never look at a painting or read a poem, ....

Suggestions for further reading

e R. Aris, Mathematical modelling techniques, Pitman, 1978.
e W.E. Boyce (Editor), Case studies in mathematical modeling, Pitman, 1981.

e M.S. Klamkin, On the ideal role of an industrial mathematician and its educational
implications. Educ. Stud. in Math. 3 244-269, 1971.

e C.C. Lin and L.A. Segel, Mathematics applied to deterministic problems in the nat-
ural sciences, Macmillan, 1974.

e H.O. Pollak, How can we teach applications of mathematics? Educ. Stud. in Math.
2 393-404, 1969.

o A.B. Tayler, Mathematical models in applied mechanics, Clarendon, 1986.



Some relevant journals
e Journal of Engineering Mathematics (quarterly)
e Mathematical and Computer Modelling (monthly)
e Mathematical Engineering in Industry (quarterly)

o SIAM Journal of Applied Mathematics (bi-monthly)
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Temperature distribution within

a crystal-growing furnace

Motivation

The purpose of this chapter is to illustrate the process of reduction, which is an important
element in the development of a mathematical model. The mathematical model is an
image of a part of the world around us. If this part is in itself rather complicated, then
a truthful representation of it in mathematical terms means that we must consider an
equally complicated mathematical model. This is not always what we want. Therefore,
as occurs frequently when making a mathematical model, we follow a process of reduction.
The final model is always a compromise between what we would like to achieve and what
we can actually realize.

Discussion of the technical background

Crystals are very important semi-manufactured products in the electronics industry. For
instance, silicon crystals are used as a basic material for the manufacture of chips. Mate-
rials such as gallium arsenide (GaAs) and cadmium telluride (CdTe) are applied in lasers.
The basic property of crystals which makes them so desirable is that their atoms are
ordered. The way the atoms are ordered depends upon the material in question. We
distinguish cubic, hexagonal, rhombic, etc., crystallographic structures. Quite frequently,
industry produces large so-called single crystals, the sizes of which can range from a few
to many tens of centimetres. In such a single crystal the basic structure and orientation
are the same throughout the crystal. The aforementioned products are made by cutting
a large single crystal into smaller parts (chips). A basic problem is that these large sin-
gle crystals are hardly ever perfect. The ideal crystallographic structure is interrupted
by faults which are called defects. These defects are created during the crystal-growing
process, owing to induced stress levels. Mostly, thermal stresses are to be blamed. These
defects often show a tendency to propagate themselves by diffusion throughout the crys-
tal, thereby completely spoiling it. It would seem, therefore, that temperature control is
of the utmost importance in the aforesaid production processes.

A few methods are available for the production of these large, mostly cylindrical, single
crystals. One of these is the so-called Bridgman-Stockbarger technique. In this process a
powdery mixture of the materials the crystal is to be composed of is put into a cylindrical
shell or container, which is then closed. This container or crucible is then slowly moved
downwards through a vertically positioned furnace. Within this furnace there is a special
hot zone in which the temperature is high enough to melt the powder. On leaving the hot
zone, the melt recrystallizes, hopefully as the desired perfect single crystal. Some crystal
growers favour a narrow but intense hot zone, others an elongated mild one. The present
study arose from precisely this conflict.

One of the problems facing the crystal grower is that it is very difficult or even impos-
sible, because of the extremely high temperatures, to obtain direct experimental insight
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Figure 1: Sketch of crystal-growth system.

into what happens in the hot zone. Moreover, the processes of melting and recrystalliza-
tion occur within a closed container. Nevertheless, it is still very important for the crystal
grower to know the isotherm structure around the solid-liquid interface. A highly curved
s-1 interface may give rise to induced thermal stresses and hence to the creation of defects.
The ideal situation is one with a flat interface. The question is how to bring this about.
Often different ways of heating will be necessary to achieve the ideal s-1 interface shape
during the various stages of the crystal-growing process.

It should be clear that a mathematical model may offer a way out where experimental
methods fail. Our purpose will be to write down a set of equations which govern heat
transfer around and inside the crucible. Moreover, we shall have to describe boundary
conditions which determine the exchange of heat with the surrounding world. It will not
come as a surprise that, because of both the complicated geometry and a multitude of
phenomena that are physically relevant, this may give rise to models that are extremely
complicated. We must therefore ask ourselves right at the beginning of our enterprise
whether a broad approach is really what we want, assuming of course that we shall be
able to formulate and then solve an all-encompassing model. The average crystal grower
is often simply groping about in the dark concerning even the most basic aspects of his
process. Therefore, models that provide insight will be most welcome. The maker of a
suitable mathematical model therefore faces the task of reducing the problem definition
to such an extent that the ensuing model will be manageable, without trivializing the
subject matter in an intolerable fashion.

Let us now put these principles to the test, using a Bridgman-Stockbarger configura-
tion with a narrow heating zone. Fig. 1 gives a rough sketch of the furnace system. The
crucible is in the centre of the furnace. During the crystal-growing process it moves in
a vertical direction, mostly downwards. Sizes of crucibles are from ten to a few tens of
centimetres. Widths may range from two to five centimetres. Ideally a crucible is quite a
bit longer than it is wide. Surrounding the crucible is a co-called r-f coil. This is a hollow
curled-up tube, mostly made of copper, with a diameter of about half a centimetre. Water
flows through the tube for cooling purposes. The coil is connected to an electric element
which produces a high-frequency current within it. This alternating current in turn pro-
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Figure 2: Simplified model of crucible.

duces a strong electromagnetic field in the immediate vicinity of the coil. If the crucible
is composed of a suitable material such as graphite, the field will produce intense eddy
currents within it. In the majority of cases the penetration depth of the field is limited,
so that the currents are strong only in the part of the crucible that is close to the coil.
The eddy currents cause dissipation (Joule heating), thereby heating up the crucible and
melting the powder inside. When the crucible is moved downwards through the coil, we
first see a melting of the powder just above or in the upper reaches of the coil, followed
by a recrystallization, hopefully as a perfect single crystal, below the coil (Fig. 2).

The crucible and the coil are completely surrounded by a perfectly sealed bell-shaped
structure. It is often necessary to prevent certain gases, e.g. oxygen, from coming into
contact with the crucible. Not infrequently the pressure within the bell-jar may exceed
the atmospheric pressure many times. The reason is that the vapour pressure of the
molten crystal material increases rapidly with temperature. When it is perfectly sealed,
this may give rise to high pressures within the crucible. In the case of an imperfect seal,
volatilization may occur. A high pressure within the bell-jar may compensate for these
detrimental effects.

It would seem that in making a mathematical model we should at least consider the
following effects and phenomena:

1. Generation of the electromagnetic field and the manner in which this field gives rise
to eddy currents within the graphite the crucible is made of;

2. The production of Joule heat by these eddy currents;

3. The conduction of heat through the crucible to the charge (powder + melt + crys-
tal), then through the charge, and finally towards the colder parts of the crucible
away from the coil.

4. Heat transfer from the outer surface of the crucible to the surroundings. This occurs
through radiation and convection.



