Theory
of '

Vibration

with Applications



Theory

of Vibration
with Applications

WILLIAM T. THOMSON

Professor of Mechanical Engineering
University of California, Santa Barbara

Prentice-Mall, Inc., Englewood Cliffs, New Jorsey



© 1972 by
Prentice-Hall, Inc.
Englewood Cliffs, N.J.

All rights reserved. No part of this
book may be reproduced in any form
or by any means-without permission
in writing from the publisher.

109876

ISBN: 0-13-914549-4

Library of Congress Catalog Card Number: 72-9039

Printed in the United States of America.

PRENTICE-HALL INTERNATIONAL, INC. London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney
PRENTICE-HALL OF CANABR, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC.,,fokyo



Preface

The subject of vibrations has a unique fascination. It is a logical subject
explainable by basic principles of mechanics. Unlike some subjects, its mathe-
matical concepts are all associated with physical phenomena which can be
experienced and measured. It is a satisfying subject to teach and to share
with students. From the first elementary text, Mechanical Vibrations, pub-
lished in 1948, the author has attempted to improve its presentation in keep-
ing with technological advances and experience gained by teaching and
practice. In this respect, many teachers and students have contributed with
suggestions and interactions over the years.

This new text, which has been almost entirely rewritten, is again a
desire on the author’s part towards clearer presentation with modern tech-
niques which have become commonplace. In the first five chapters, which
deal with single degree of freedom systems and with two degrees of freedom
systems, the simplicity of the previous text has been adhered to and, hope-
fully, improved upon. Since the digital computer is now a commonly avail-
able facility, its use in the vibration field is encouraged by some simple
examples. In spite of the versatility of the digital computer, the analog com-
puter is still a useful tool, and, in many cases, its use is fully justified. The
first five chapters, which keep two degrees of freedom systems on a simple
and physical basis, form a background for the understanding of the basic
subject. of vibrations, which can be covered in a quarter or a semester in a
first course on vibration.
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In Chapter 6 the concepts of the two degrees of freedom systems are
generalized to those of multidegree of freedom systems. The emphasis of
this chapter is theory, and, with the aid of matrix algebra, the extension to
multidegree of freedom systems can be presented elegantly. All of the basis
for coordinate decoupling becomes clear with matrices. Some uncommon
ideas of normal modes in forced vibration and the method of state space
used commonly in control theory are introduced.

There are many analytical approaches to vibration analysis of complex
structures of many degrees of freedom. Chapter 7 presents some of the more
useful procedures, and, although most multidegree of freedom systems are
today solved on the digital computer, one still needs to know how to formu-
late such problems for efficient computation and to know some of the
approximations which can be made to check the calculations. All of the
problems here can be programmed for the computer, but the theory behind
the computations must be understood. A digital computation of a Holzer-
type problem is illustrated.

Chapter 8 deals with continuous sytems, or those problems associated
with partial differential equations. A finite difference approach to beam prob-
lems offers an opportunity to solve such problems on the digital computer.

Lagrange’s equations, covered in Chapter 9, strengthen again the
understanding of dynamical systems presented earlier and broaden one’s
view for other extensions. For example, the important concepts of the mode
summation procedure is a natural consequence of the Lagrangian generalized
coordinates. The meaning of constraint equations as physical boundary con-
ditions for modal synthesis is again logically understood through Lagrange’s
theory.

Chapter 10 treats dynamical systems excited by random forces or dis-
placements. Such problems must be examined from a statistical point of
view and, in many cases, the probability density of the random excitation is
normally distributed. The point of view taken here is that, given a random
record, an autocorrelation can be easily determined from which the spectral
density and mean square response can be calculated. The digital computer
is again essential for the numerical work.

In Chapter 11 the treatment of nonlinear systems is introduced with
emphasis on the phase plane method. When the nonlinearities are small,
the methods of perturbation or iteration offer an analytical approach. Results
of machine computations for a nonlinear system illustrate what can be done.

Chapters 6 through 11 represent subject matter appropriate for a
second course in vibration, which may be covered at the graduate level.

WILLIAM T THOMSON
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Oscillatory

Motion

1.7 INTRODUCTION

The study of vibration is concerned with the oscillatory motions of bodies
and the forces associated with them. All bodies possessing mass and elasticity
are capable of vibration. Thus most engineering machines and structures
experience vibiation to some degree, and their design generally requires
consideration of their oscillatory behavior. .

Oscillatory systems can be broadly characterized as linear or nonlinear.
For linear systems the principle of superposition holds, and the mathematical
techniques available for their treatment are well-developed. In contrast,
techniques for the analysis of nonlinear systems are less well known, and
difficult to apply. However, some knowledge of nonlinear systems is desir-
able, since all systems tend to become nonlinear with increasing amplitude
of oscillation,

There are two general classes of vibrations—free and forced. Free
vibration takes place when a system oscillates under the action of forces



2 Oscillatory Motion

inherent in the system itself, and when external impressed forces are absent.
The system under free vibration will vibrate at one or more of its natural
frequencies, which are properties of the dynamical system established by its
mass and stiffness distribution.

Vibration that takes place under the excitation of external forces is
called forced vibration. When the excitation is oscillatory, the system is forced
to vibrate at the excitation frequency. If the frequency of excitation coincides
with one of the natural frequencies of the system, a condition of resonance
is encountered, and dangerously large oscillations may result. The failure of
major structures, such as bridges, buildings, orairplane wings, is an awesome
possibility under resonance. Thus, the calculation of the natural frequencies
is of major importance in the study of vibrations.

Vibrating systems are all subject to damping to some degree because -
energy is dissipated by friction and other resistances. If the damping is small,
it has very little influence on the natural frequencies of the system, and
hence the calculations for the natural frequencies are generally made on the
basis of no damping. On the other hand, damping is of great importance in
limiting the amplitude of oscillation at resonance.

The number of independent coordinates required to describe the motion
of a system is called the degrees of freedom of the system. Thus a free particle
undergoing general motion in space will have three degrees of freedom,
while a rigid body will have six degrees of freedom, 1.e., three components of
position and three angles defining its orientation. Furthermore, a continuous
elastic body will require an infinite number of coordinates (three for each
point on the body) to describe its maotion; hence its degrees of freedom must
be infinite. However, in many cases, parts of such bodies may be assumed to
be rigid, and the system may be considered to be dynamically equivalent
to one having finite degrees of freedom. In fact, a surprisingly large number
of vibration problems can be treated with sufficient accuracy by reducing
the system to one having a single degree of freedom.

7.2 HARMONIC MOTION

Oscillatory motion may repeat itself regularly, as in the balance wheel of a
watch, or display considerable irregularity, as in earthquakes. When the
motion is repeated in equal intervals of time 7, it is called periodic motion.
The repetition time 7 is called the period of the oscillation, and its reciprocal,
f=1/1, is called the freguency. If the motion is designated by the time
function x(r), then any periodic motion must satisfy the relationship
x(¢) = x(t + 7). ‘

Irregular motions, which appear to possess no definite period, can
be considered to be the sum of a very large number of regular motions of
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different frequencies. Properties of such motion can be described statistically;
the discussion of these properties will be deferred to a later section.

The simplest form of periodic motion is harmonic n:otion. It can be
demonstrated by a mass suspended from a light spring, as shown in Fig. 1.2-1.
If the mass is displaced from its rest position and released, it will oscillate
up and down. By placing a light source on the oscillating mass, its motion
can be recorded on a light-sensitive film strip which is made to move past it
at constant speed.

—{’%Wg ,

Figure 1.2-1. Recording of harmonic motion.

The motion recorded on the film strip can be expressed by the equation
X =»A'sin 2n~i— (1.2-1)

where A4 is the amplitude of oscillation, measured from the equilibrium
position of the mass, and 7 is the period. The motion is repeated when ¢ = 1.
Harmonic motion is often represented as the projection on a straight
line of a point that is moving on a circle at constant speed, as shown in
Fig. 1.2-2. With the angular speed of the line op designated by w, the displace-
ment x can be written as '

x = A sin @¢ (1.2-2)

The quantity w is generally measured in radians per second, and is referred

A sin w?

Figure 1.2-2. Harmonic motion as projection of a point moving on a circle.
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to as the circular frequency. Since the motion repeats itself in 2z radians,
we have the relationship

W =

=2nf (1.2-3)

2§

where 7 and f are the period and frequency of the harmonic motion, usually
measured in seconds and cycles per second respectively:

For the motion of a point around a circle, it is convenient to use an
imaginary axis  and let the radius of the circle be represented by a complex
* quantity z called a phasor.

The phasor z is expressed by the equation

z = Ae® = Acosf + idsinf (1.2-4)

which define the real and imaginary components. With § = wt, the com-
ponents vary sinusoidally with time

Re z = A4 cos wt

Imz = A4 sin wt

It is often necessary to consider twwo harmonic motions of the same
frequency but differing in phase by @. The two motions may be expressed by
the phasors '

j— icot
z, = A,e®

z, = A, ?

where 4, and 4, are real numbers. The second phasor can be further rewritten
as

1, = Ajete = Aot (1.2-5)

where A4, is now a complex number. This form is often useful in problems
involving harmonic motion.

The addition, multiplication, or raising to powers of phasors follow
simple rules which are given in Appendix A. With harmonic motion expressed
as phasors, their manipulations are easily carried out.

The velocity and acceleration of harmonic motion can be simply
determined by differentiation of Eq. (1.2-2). Using the dot notation for the
derivative, we obtain

% = wA cos wt = @A sin (cot + 12‘—) (1.2-6)

% = —w*A sin wf = @*A sin (©0f + 7). (1.2-7)



Harmonic Analysis 5

Thus the velocity and acceleration are also harmonic with the same frequency
of oscillation, but lead the displacement by =/2 and n radians respectively,
as shown in Fig. 1.2-3.

N T\

™ AN |

\77\/ o
N\

?\/ N

Figure 1.2-3. In harmonic motion, the velocity and acceleration lead the
displacement by #n/2 and =.

Examination of Egs. (1.2-2) and (1.2-7) reveals that
® = —w?*x (1.2-8)

so that in harmonic motion the acceleration is proportional to the displace-
ment and is directed towards the origin. Since Newton’s second law of motion
states that the acceleration is proportional to the force, harmonic motion can
be expected for systems with linear springs with force varying as kx.

1.3 HARMONIC ANALYSIS

It is quite common for vibrations of several different frequencies to exist
simultaneously. For example, the vibration of a violin string is composed of
the fundamental frequency f and all its harmonics 2f, 3f, etc. Another
example is the free vibration of a multidegree-of-freedom system, to which
the vibrations at each natural frequency contribute. Such vibrations result in
a complex waveform which is repeated periodically as shown in Fig. 1.3-1.

The French mathematician J. Fourier (1768-1830) showed that any
periodic motion can be represented by a series of sines and cosines which are
harmonically related. If x(¢) is a periodic function of the period 7, it is rep-
resented by the Fourier series

_a
x(t) = —2Q + a, cos @t + a, cos 2m,t -} (.3-1)

+ b, sinw,t + b, sin2w,t + ---
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x| °

/,

| T

Figure 1.3-1. Complex periodic motion of period T.

where w, = 2r/t is the fundamental frequency. To determine the coefficients
a, and b,, we multiply both sides of Eq. (1.3-1) by cos ne, ¢ or sin new, t, and
integrate each term over the period 7. Recognizing the following relations,

2 0 ifm=n
f cos nw,t cosmw,tdt =g .
ez = fm=n
w,

o2 [0 _if m = n
f sinnw,t sinmwtdt =g .

a2 la; if m=n
0 ifme£n
0 fm=n

T2
f cos nw,t sin me,t dt = {
-1,2

all terms except one on the right side of the equation will be zero, and we
obtain the results

w 2
a, = ?‘ f x(t) cos nw ¢ dt (1.3-2)
-1’2
b, — f ) sin no 1 dt (1.3-3)
n P o2 1 ‘

Returning to Eq. (1.3-1) and examining the two terms at one of the
frequencies, nw,, their sum can be written as
a, cos hw,t + b, sin nw, t

R ey v L S b }
e an+b"{mcosnwlt+mslnnwlt

= ¢, cos(nw,t — ¢,)
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where
¢, = JETE (1.3-4)
and
tang = (1.3-5)

Thus ¢, and ¢, (or a, and b,) completely define the harmonic contribution
of the periodic wave.

When ¢, and ¢, are plotted against the frequency new, for all », the result
is & series of discrete lines at w,, 2w,, 3w,, etc., as shown in Fig, 1.3-2. Such
plots are called the Fourier spectrum of the waveform.

With the aid of the digital' computer, harmonic analysis today is
efficiently carried out in minimum time. ‘A new computer aigorithm intro-
duced recently, known as the Fast Fourier Transform,* further reduces the
computational time.

Co
I 1 l 1 1
O w 2w Ny Frequency
o x X
. 3 ! : ¥
| 1 x ) P
L ! L . . t I :
0 wi 2wy L X Nwy Frequency

Figure 1.3-2. Fourier spectrum for a periodic time function.

1.4 TRANSIENT TIME FUNCTION

A function that exists only for a limited time and is zero at all other times
is called a transient time function. Such functions are not periodic. Figure
1.4-1 shows a typical pressure variation of a sonic boom that is a transient
time function. The force of impact during a collision of two bodies is another
example.

*J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of
Complex Fourier Series,” Mathematics of Computation 19; 90 (April 1965), pp. 297-301.

See also—“Special Issue on Fast Fourier Transform,” JEEE Trans. on Audio &
Electroacoustics, Yol. AU-15, No. 2 (1967).
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Ap (pst)
1.0

0 \\/LO.IO t (sec)
-1.0

Figure 1.4-1. The sonic boom (N-Wave) is a transient time function.

The response of a mechanical system to an impulse or shock is generally
referred to as a transient response. Due to the presence of damping, such
vibrations will die down after the excitation is over.

Since transient waves are not periodic, the method of Fourier series is
not applicable. However, nonperiodic functions can be analyzed for their
frequency content by the method of Fourier Transforms (see Chapter 10).
In contrast to the discrete frequency spectrum of the periodic function, the
frequency spectrum of a transient time function is continuous.

1.5 RANDOM TIME FUNCTION

The types of functions we have considered up to now can be classified as
deterministic, i.e., mathematical expressions can be written which will deter-
- mine their instantaneous values at any time z. There are, however, a number
of physical phenomena that result in nondeterministic data where future
instantaneous values cannot be predicted in a deterministic sense. As exam-
ples, we can mention the output of a noise generator, the heights of waves in
a choppy sea, ground motion during an earthquake, and pressure gusts
encountered by an airplane in flight. These phenomena all have one thing in
common : the unpredictability of their instantaneous value at any future time.
Nondeterministic data of this type are referred to as random time functions.
A sample of a typical random time function is shown in Fig. 1.5-1.

In spite of the irregular character of the function, certain averaging proce-

x(1)

Figure 1.5-1. A record of random time function.



