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PREFACE

The International Workshop on Functional Analysis in Markov
Processes was held at Katata, Japan, August 21-26, 1981, under the
auspices of the Taniguchi Foundation. The workshop was followed
by the International Conference on Markov Processes and Analysis
held at Kyoto, August 27-29, 1981. Among the participants in the
Katata workshop and the Kyoto conference, we had 8 mathematicians
from abroad. The present volume consists of 15 articles based on
the talks given at Katata and Kyoto.

We were given a generous financial support by the Taniguchi
Foundation as well as the warm hospitality of Mr. T. Taniguchi.

In this connection, we are also indebted to Professors Y. Akizuki
and S. Murakami. Professor K. Itd stayed with us at Katata and
gave valuable advice in coordinating the workshop. Professors

S. Watanabe and S. Kotani were tirelessly engaged in preparing and
conducting the workshop as members of the Organizing Committee.
Professor H. Kunita made the planning of the Kyoto conference, which
took place at the Research Institute for Mathematical Sciences,
Kyoto University. We would like to express our hearty thanks to
all of those people and institutions.

M. Fukushima
Osaka
December,1981
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Analytic functionals of Wiener process and
absolute continuity
by
Shigeo KUSUOKA¥*
Department of Mathematics
Faculty of Science
University of Tokyo

1. Introduction.

1 d n d

Suppose that F = (£ ,...,f): R > R , n>d, is a real analytic

function, and let
Y

90X .
J

rnk F = max{ the rank of ( (x))i ; xe R ).

3

i IR |
l;ics

Then it is easy to see the following :

the image measure on IRd induced by Lebesgue measure on Rr"
through F : Rr" IRd is absolutely continuous, if and only if
rnk F =d.

Now let us consider an infinite dimensional version of the
above mentioned statement. Let B0 denote C([0,1] ~ IRN) and Ho
denote the usual Wiener measure on BO. Then our statement might
be as follows:

if F = B0—>]Rd is "analytic", then the image measure Fuo of Ho

under F is absolutely continuous if and only if rnkF = d.

*) Research partially supported by the SAKKOKAI FOUNDATION.



Note that 'if' part is a statement of Jacobi type and 'only if'
part is one of Sard type. Recently Malliavin [6] , Ikeda and
Watanabe [3] , Shigekawa [10] and Stroock [11]] have proved a
far more general theorem of Jacobi type. As a matter of fact,
the present work is much inspired by their works. So our
interest is in 'only if' part.

The main problem is what is an appropriate definition of
"analytic". If we took the usual definition used in nonlinear
functional analysis for it, our statement would become true.
However, such a statement would have poor applications. For
instance, solutions of stochastic differential equations with
linear coefficients are not always even continuous functionals
of Wiener process, and so we would not be able to apply such a
statement for them. Thus we need more probabilistic definition
for "analytic".

Our answer is as follows. We will give the definitions of

a quasi-analytic function and rnk F in Section 6, and we will

prove the following

Theorem 6.2. Let F : B0+fmd be a quasi-analytic function.
Then there exist a paracompact real analytic manifold of
dimension rnk F with a Riemannian volume v and a real analytic
immersion 1 :M-+JRd such that the image measure Fpo is
absolutely continuous relative to the image measure 1v induced
by v through 1.

This leads to our statement for a quasi-analytic function

F :BO +ZR§.

Our tools are a Bo—valued Ornstein-Uhlenbeck process and the
associated Dirichlet form, the same as Malliavin [6]. Roughly

speaking, our strategy is analytic continuation along the



3

Ornstein-Uhlenbeck process. In order to carry out our straﬁegy,
we will study several properties of an Ornstein-Uhlenbeck process
in Section 3, 4 and 5. In Section 8, we will give an application
of our theorem. We will show that the solution of any stochastic
differential equation with real analytic coefficients is a
quasi-analytic function of Wiener process, and we will give
the necessary and sufficient condition for the probability law
of the solution to be absolutely continuous.

The author wishes to thank Professor M. Fukushima and Professor

Y. okabe for useful conversation.

Notations.
For any Banach spaces B and E, B* denotes the dual Banach space
of B and Lm(B,E) denotes a Bachach space consisting of bounded
linear operators from B into E with an operator norm.
For any topological spaces M and N, C(M ~N) denotes a set

of all continuous maps from M into N.



2. Abstract Wiener space and Dirichlet form.

Let B be a separable real Banach space and H be a separable
real Hilbert space continuously, densely included in B. We
identify H* with H, then B* is considered a dense subset of H.

Let p be a probability measure on B satisfying
exp (V-1 _,<u,z>_ ) u(dz) = exp(-—lHulhz) for all ue B*
B B* "' B 2 °

The triple (u,H,B) is said to be an abstract Wiemer space.

Now let us consider an infinite dimensional analogue of
the Sobolev space.

Definition 2.1. We say that a Borel function u defined on B is

ray absolutely continuous with respect to M, if there exists

a Borel function ﬁh defined on B for each he¢ H such that
(1) Gh(z) = u(z) for uU-a.e.z and

(2) ﬁh(z+th) is absolutely continuous in t for all z € B.

Definition 2.2. We say that a Borel function u defined on B is

stochastic H-Gateaux differentiable with respect to ¥, if there

exists a Borel map Du: B-+H such that for any heH,

%[u(z+th)-—u(z)] converges to (Du(z),h)H in probability with
respect to u as t>0. Du:H~>B is called the stochastic
H-Gateaux derivative of u.

Definition 2.3. We define a subset D(£) of L?(B;du) by

D(g) = {ue L2(B;du) ; u is ray absolutely continuous and
stochastic H-Gateaux differentiable, and the stochastic

H-Gateaux derivative Du satisfies {B (Du(z),Du(z))H p(dz)<e 1},

and we define a symmetric bilinear form defined in D(¢&) x D(€)

by €&(u,v) = JB (Du(z),Dv(z)), u(dz) for each u,ve D).
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Here L°(B;du) denotes the set of all U square integrable Borel
functions defined in B. Furthermore we define a symmetric

bilinear form 81 defined in D(£) x D(E) by
£, wv) = JB u(z)v(z) u(dz) + E(u,v) for each u,ve D(£).
(‘fl(u,u) will be denoted by fl(u) .

The following is due to [4].

Proposition 2.1. (§,D(£)) is a Dirichlet form on L2(B;du).

That is to say, (&,D(§)) is a closed Markovian symmetric
bilinear form.
The following two propositions will be used in Section 8.

Proposition 2.2. Let E be a real Banach space and F : B>E be

a continuously Frechet differentiable map. Tll'len a Borel
function g defined in B given by g(z) = ||F(2)]| g for each
ze¢B, is ray absolutely continuous and stochastic H-Gateaux
differentiable with respect to u, and the stochastic H-Gateaux

derivative Dg : B+H of g satisfies
lipg(2)ll ; = supl || F' (2)hllg: he, [[hlly =17

for py-a.e.z. Here F'(*) :B~> Lw(B,E) denotes the Frechet

derivative of F.

Proposition 2.3. Let E be a real Banach space and Fn :B->E,
n=1,2,..., be continuously Frechet differentiable maps.

et F:B>E and DF : B> Lm(H,E) be Borel maps satisfying

2

2 (o]
JB [ ||F(Z)||E + || DF(2) ”Lm(H,E) ] u(dz) < and

2 ' 0 2 ->
fB [ |l F(z) -F (2) ||E + || DF(2) - F (z)lH ”L (H,E) 1 u(dz)

as n + ®. Then a Borel function g : B> IR given by

0



g(z) = || F(z) ”E for each z ¢ B, belongs to D(£), and moreover
llpg(2) Iy < Il DF(2) || =y &) for b-a.e.z.

The proof of Proposition 2.2 is similar to that of Lemma 1.3
in [4] or Theorem 4.2 in [5]. Proposition 2.3 is an easy
consequence of Proposition 2.1 and Proposition 2.2.

For any vector subspace E of H, let V(E) denote a set of all
finite dimensional vector subspaces of E. For any Ve V(B*),
let PV denote the orthogonal projection from H onto V. Taking

an orthonormal base {el,...,en} of V, we obtain

P.u = El B*<ej’u>B for each ue€H. So we see that PV is

extensible to a bounded linear operator 1~>V : B>B*,

Definition 2.4. For any Ve V(B*), we define a bounded linear

:BxB~+>B b ;2 =P
*B by [z).2,],

operator [-,-]V vZ1 + (zz—Psz) for

each 2,2, €B. We say that a sequence {vn}n:l of vector spaces

(o]
is a canonical sequence if {Vn}n= < V(B*), Vl €V, <V_<..., and

1 2 3

I c8

Vn is dense in H.

n=1

Proposition 2.4. Let {Vn}nzl be a canonical sequence and

f: B+1R be a u square integrable function. Then

f H(da) f | £(2) -f([z,a]V )|2 p(dz) > 0 as n » o.
B B n

Proof. It is easy to see that there exist Borel functions

g :Vn->JR, n=1,2,..., such that

n

f | £(z) -gn(PV z) |2 p(dz) - 0 as n » ». Then we obtain
B n



[ f U (da) f | £(2) - £(lz,al, )|2 u(dz) 1] L
B B n

IA

[f u(da)f ]f(z)—gn(f’vz)lz (dz)]1/2
B B n

+ [ f u(da) f If([z,a]V )-g'n(13V (z,aly )l 2 1(az) 1 /2
B B n n n

zu(dZ)ll/2 + 0, n*> o,

2 [f |£(2) - g, (B z)
B n

This completes the proof.

Definition 2.3 and Proposition 2.4 lead to the following.

Proposition 2.5. (1) Let ue D(&) and Ve V(B*). Then

u([-,z]V) €D(€) for u-a.e.z, D(u(l-,zly)) = PVDu([-,Z]V)

for p-a.e.z, and f u(dz) &l(u([',zlv)) < £€.(u).
B

1

(2) Let ueD(€) and {Vn}n:1 be a canonical sequence. Then

u(dz) £,(u-u(l-,zl,)) >0 as n » =,
[ ) v,



3. Standard Ornstein-Uhlenbeck process.

Definition 3.1. We say that a B-valued stochastic process

{ w(t) ; 0 <t <} is a standard Wiener process associated

with (u,H,B) if

(1) w(+) : [0,®) +B is continuous and w(0) = 0 with probability
one,

(2) w(tl), w(tz)-w(tl), m(t3)‘-w(t2),--., w(tn)— u!(tn_l) are
independent B-valued random variables for any integer n and
0<tl<t2<... <tn,

(3) the probability law on B induced by w(t)-w(s), t >s, depends

only on t-s, and

(4) the probability law on B induced by (1) is equal to U.

It is well kown that there always exists such a process as
above. Let us consider the following stochastic differential

equation on B

- % xZ(t)dt + dw(t)

dez(t)
(31
\ x%(0) = z ¢ B.

Then the solution of (3.1) uniquely exists and represented by

- lt t - l(t—s)
) f 2
Z +

(3.2) x%(t) = e e aw(s) .
0

Let Pz be a probability measure on C([0,®) >B) induced by the
solution {x%(t) ;0<t<e} of (3.1). Then P is determined
uniquely for each z ¢ B. Let W denote C([0,») >B). It is easy

to see that ({w(t); te [0,@)}, weW, {P,i ze B}) is a u-symmetric
strong Markov process on B associated with the Dirichlet form
(E,D(£)). ( See [4] for details.) This Markov process is

called a standard Ornstain-Uhlenbeck process associated with

(,H,B).



For any probability measure V on B, let us define a probability

measure P,, on W by

Pv(dw) = f V(dz) Pz(dw). Then it is obvious that
B

{w(t) ; 0st<w} is a stationary process under P (dw) .

Definition 3.2. We define a capacity, Cap(-), on B by the

following, for each open subset G of B

Cap(G) = inf{ﬁl(u) ;i ueD(€), u(z) 21 for p-a.e.z€G },
and for each subset A of B

Cap(A) = inf{Cap(G) ; AcG and G is open in B }.
Furthermore we define a function Op ¢ W~ [0,«] for each Borel
subset A of B by cA(w) = inf{t>0; w(t) €A } with the convention
that inf ¢ = =,

Then the following is a well known result. ( See Meyer [7]

for example. )

Proposition 3.1. Op ¢ W~ [0,»] is P ,-measurable for any Borel
subset A of B and any probability measure v on B, and thus
OA is a stopping time.

For any Borel subset A of B, let e. denote a function defined

A

on B given by eA(z) = Ez[ exp( -0, )] for each z ¢ B, where

A

Ez[ f ] denotes fw £ (w) Pz(dw) as usual.

The following is due to [4] and Fukushima [1] .

Proposition 3.2. (1) % D(€) and gl( eA) = Cap(A) for any

Borel subset A of B.
(2) Pu{ W ; oA(w) = o} =1 if and only if Cap(A) =0 for any Borel

subset A of B.
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Definition 3.3. ILet M be a topological space. We say that

a map f:B~+M is guasi-continuous if there exists an increasing

sequence {Kn }n:I of closed subsets of B such that

fIK :K *M, n=1,2,..., are continuous and Cap( B \K_ ) > 0
n

as n - o,

Remark 3.1. Since PU{W; (w)>® as n~+ «} =1 by

a
B\Kp

Proposition 3.2, we see that for any quasi-continuous map

f:B~+M, PU{W€W; f(w(+)) : [0,2) M is continuous} = 1.

Definition 3.4. We say that a subset K of B is quasi-closed

if there exist some topological space M, a quasi-continuous

map £ : B+M and a closed subset E of M satisfying K = f_l(E) .
We say that a subset G of B is quasi-open if B \ G is quasi-
closed.

Remark 3.2. By Remark 3.1, we see that

Pu{waw; {te[0,°); w(t) eK} is closed in [0,®)} = 1
for any quasi-closed subset K of B, and
Pu{w€w; {te[0,»); w(t)e G } is open in [0,w)} = 1

for any quasi-open subset G of B.

The following is obvious.

Proposition 3.3. (1) Let Mn’ n=1,2,..., be topological spaces

and fn : B> Mn’ n=1,2,..., be quasi-continuous maps. Then

oo [ee]
the product map il fn :B > 1 Mn is quasi-continuous.
=1 n=1

(2) Let Kn’ n=1,2,..., be quasi-closed subsets of B. Then

Kl ] K2 is quasi-closed and n Kn is quasi-closed.
n=1

(3) A subset of capacity zero in B is quasi-closed.
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The following lemma is useful.

Lemma 3.1. (1) Let {Kn}n:l be a decreasing sequence of quasi-

closed Borel subsets of B. Then Cap( Kn)¢ Cap ( n Kn) as n > o,
n=1

(2) Let G be a quasi-open Borel subset of B. Then Cap(G) =0

provided that u(G) = 0.

Proof. (1) For any T >0, it is obvious that
© o
n{t; 0stsT, wit)e K.} = {t; 0<t<T, w(t)e 5 K }.
n n
n=1 n=1
However, {t; 0 <t <T, w(t)e Kn}’ n=1,2,..., are compact for

Pu—a.e.w by Remark 3.2. Thus we obtain

Pu{w; ok (w) <T} + Pu{w; Ok (W) €T }, n > o,
n
n
This implies e, (z) v+ e (z), n » », for u-a.e.z. By virtue

K
n

nK
nh

of Lemma 3.1.1 in Fukushimal[l]l, we get

él(eK - ey ) = Cap(Kn)—Cap(Km) for any n >m.

Hence {eK }n:]_ is convergent in D(£) with respect to the inner

n
product él' On the other hand, e > €x s+ N >, in L2(B;du).
n n
n
This proves that Cap(K_) =€l(eK ) ¥ El(enK ) =Cap( n K ),
n nn n=1

n > o,
(2) Suppose that U(G) =0. By Remark 3.2, we get

PU{W; oG(w) = inf{r>0; r is a rational number, w(r)eG}}=1.

However, Pu{w; w(t) €G} = u(G) = 0 for any t >0, and
accordingly PU{W; cG(w) < ©»} = 0. Therefore our assertion

follows from Proposition 3.2.
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Proposition 3.4. Assume that ue D(§) and u: B+ IR is quasi-

continuous. Then the following inequality holds for any T > 0
and A > 0 @

T

<T} >2} < —i—é’,l(u)l/z.

o
IA
o

P { w; supl |u(w(t))]
Proof. Let K ={ ze¢B; u(z) >\ }. Then we get
Pu{w;sup{lu(w(t))l ; 0<sts<T} > A}
")
< e e, (z) u(dz)
B K
< eT Cap(K)l/2 5

By virtue of Lemma 3.1.5 in Fukushima[l], we obtain

Cap (K) < -;12— f—l (u). This completes the proof.



