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Preface

The microelectronics revolution has given low cost, very high performance computing
power to virtually anyone. Scientists and engineers in all areas are in the position to use
these general purpose microcomputers to control experiments, gather and reduce data,
and optimize measurements—if they can determine what to buy, how to interface it, and
how to acquire and manipulate data.

In Interfacing and Scientific Computing on Personal Computers, we present a
highly applied, experimental approach to computer interfacing and data acquisition and
reduction. We demonstrate basic concepts, clarify jargon, provide powerful software
subroutines and complete programs, and present problems and experiments designed to
develop skills for efficiently interfacing and automating many instruments and systems.
This material is designed for those who are reasonably familiar with any computer
language. We assume no knowledge of electronics, and sophisticated electronic
hardware descriptions are avoided, although enough digital and analog background is
provided to understand important hardware interfaces. This book forms the basis of our
upper division undergraduate and graduate interfacing course that is taken by physicists,
chemists, biochemists, physiologists, and engineers.

We generally utilize commercial high-performance, low-cost hardware and
software. We build around software and hardware that is compatible with IBM Personal
Computer (PCs) and work-alike clones because of their high performance-cost ratio, and
the ready availability of scientifically useful peripherals and software.

Our main software language is Pascal, which is a structured high-level program-
ming language that teaches good programming skills and prepares students for languages
such as the government standard Ada. We use Borland’s Turbo Pascal which is inexpen-
sive, powerful, and convenient. Its wide availability makes Turbo Pascal the de facto
microcomputer Pascal. Turbo Pascal compiles and executes extremely quickly, and for
interfacing applications has extensions for direct hardware control and graphics.

Interfacing the new equipment is made easier with our detailed sections on input
and output devices such as analog-to-digital converters (ADCs), digital-to-analog con-
verters (DACs), parallel interfaces, RS-232 serial interfaces, keyboards, video displays,
digitization tablets, and real time clocks (RTCs). Concepts are introduced in the context
of laboratory automation and on-line data reduction of scientifically useful experiments.
Emphasis is placed on understanding fundamental principles and avoiding the numerous
subtle problems that can arise.



In addition to showing how to acquire data, we demonstrate how to improve its
accuracy and precision using a variety of signal-to-noise (S/N) enhancement techniques,
and data reduction and fitting techniques, especially nonlinear fitting. Pitfalls such as
false minima and the blind use of smoothing in many commercial instruments are
explained.

For those interfacing problems that require the exquisite control and speed of
machine language programming, we devote several chapters to assembly language. In
particular, we show how to marry high-level and assembly language routines to gain the
benefits of both.

We emphasize understanding underlying principles, avoiding pitfalls, and using
experiments and programming to develop skills. Thus, even though readers might not
end up using specific hardware or software, they will understand the principles of com-
mercial instrumentation and be able to probe the manufacturer to find out what the
instrument can actually do rather than blindly accept any exaggerated or misleading
claims.
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Logic, Numbers,
Arithmetic, Software, and
Computer Architecture

1.1 INTRODUCTION

In this chapter we introduce a number of important concepts and supply an overview of
computer hardware and software. While much of what we say applies to computers in
general, this text is based on IBM Personal Computers (PCs) and their clones or work-
alikes.

We begin with basic digital logic because all computer operations are built on these
logic elements and many computer interfaces utilize such logic. Then follows a descrip-
tion of the basic ways of representing numbers in computers, different number bases, and
conversions between bases. This information is necessary to appreciate the resolution
and range of numbers as well as to understand how they are stored in memory.

A brief overview of microcomputer architecture gives an idea of some of the capa-
bilities and limitations of these machines. This is followed by a discussion of the driving
force behind computers, software. Finally, there is a section on different types of com-
puter languages with a description of the advantages and weaknesses of the more com-
mon languages.
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1.2 LOGIC

In order to understand how a computer works and how many interfaces are constructed,
we must understand basic logic and the corresponding electronic symbols. We describe
here the basic building blocks of any computer system. These consist of NOT or invert,
AND, OR, and exclusive OR functions as well as the basic counting element—the flip-
flop. In addition, we show how the essential shift register can be built from flip-flops.
We will not go into the electronic construction of the logic elements.

We first establish a convention. Symbolic logic has two states: true and false.
However, in electronic logic, two other conventions are used. These are "0" and "1" or
"L" (low) and "H" (high). Both alternatives are widely used but we prefer the more com-
mon 0—1 convention.

H and 1, being true states, correspond to "positive true" logic. Positive true is the
most likely. The other convention is "negative true" logic where the true and false states
of positive true logic are reversed. That is, a true is low or O and a false is high or 1.
Certain computer (DEC 11 series) and communications buses (HPIB or IEEE-488 instru-
ment bus) use negative true logic. Unfortunately, some systems mix positive and nega-
tive true logic and do not tell you which is used where, or bury this information in an
appendix.

One widely used logic family is Transistor-Transistor-Logic (TTL). The high state
is 2-5 V, while the low state range is 0-0.8 V. Any voltage in the 0.8-2.0 V range is
ambiguous to the logic devices. Many devices that are built with other technologies are
TTL compatible; that is, they recognize and generate TTL level voltages. Most logic
devices in PCs are TTL compatible.

Logic functions are commonly described by a truth table, which is a complete list of
the output states for all possible input states. We turn now to different logic functions.

1.2.1 NOT Gate or Invert Function
The NOT function is the inverse of the input. The NOT function of input A is writ-
ten as A and is read NOT A. The truth table and logic symbols are shown in Figure 1-1.

A—[><»Z

Figure 1-1. NOT function truth table and logic symbol.

>
>

- O
[

1.2.2 AND Function

The AND function is true if the inputs are all true. For a two-input AND function
of A and B, it is written as AB and read as A AND B. The truth table and symbol are
shown in Figure 1-2.



1.2 LOGIC 3

A B AB

0 0 0

0 1 0 A AB
1 0 0 B —

1 1 1

Figure 1-2. AND function truth table and logic symbol.

Logic devices such as the AND are called gates because they can be used to control
or "gate" the flow of information. Consider a two-input AND. If B is the control input,
then the A input can be transmitted or blocked by the setting of B. If B=1 then A is
transmitted directly to the output, or the gate is transmitting. Conversely, if B=0, the gate
is off and the input is fixed at O regardless of what A is. .

A related function is the NAND or NOT AND denoted by AB and read NOT the
quantity A AND B. The symbol and truth table are shown in Figure 1-3. An "o" at an
input or an output of a logic symbol stands for the NOT or invert function.

m iDm

A B
0 0 1
0 1 1
1 0 1 A — —
1 1 0 B — AB

Figure 1-3. NAND truth table and logic symbol.

1.2.3 OR Function

The OR function is true if any input is true. The OR of two inputs is denoted by
A+B and read A OR B. Similarly, there is a NOR or NOT OR function. The truth tables
and symbols for the OR and NOR are shown in Figure 1-4.

PV QD-(HB

0
1
1
1

—— 0 O >
— O = Ot

O OO
o D>
bl

+

ve)

Figure 1-4. OR and NOR truth tables and logic symbols.
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1.2.4 Exclusive OR Function
The exclusive OR (XOR) is a two-input function that is true if and only if one or the
other input is true. The truth table and logic symbol are shown in Figure 1-5.

AGB
0 A
1 DB
1 B D &
0

Figure 1-5. Exclusive OR truth table and logic symbol.

e a=k=
-0 = Ol

An exclusive OR can function as a controllable inverter. If A=0, the gate transmits
B unchanged. If A=1, then B is inverted at the output.

1.2.5 Flip-Flops (FF)

Flip-flops are the basic counting elements of digital logic. Their name arises since
their output can flip-flop or toggle between different output states. In contrast to the
static logic devices described thus far, flip-flops change state in response to a clock pulse.
The changes are dependent on the states of the control inputs. The clock pulse can be a
complete 0—1—0 transition or the edges of a 0—1 or negative 1—0 transition. The first
is called level triggered while the latter two are positive and negative edge-triggered
respectively.

There are numerous types of flip-flops and we restrict our current discussion to a
positive edge-triggcred JK flip-flop. The truth table and symbols are shown in Figure
1-6. Q, is the state of the Q output before the clock pulse and Q | is the state after the

trigger clock. The flip-flop has two outputs Q and Q where Q is the complement of Q
(i.e., NOT Q). As we will see, having the complement available greatly simplifies cer-
tain types of logic design.

To read the table we consider different state changes. If J=K=0 and there is a clock
transition, the outputs remain unchanged. That is, Q at time n+1 is equal to Q at n or
Q,,;=Q, IfJ=1and K=0,Q goes to a 1 after the clock transition regardless of its origi-

nal state. If J=K=1, then Q is complemented or toggled after the clock pulse. This last

I & Q.1

0 0 Q, e J
0 1 0

1 0 _ 1 —a %K W
1 1 Q, (toggle) |

Figure 1-6. JK flip-flop truth table and logic symbol.
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mode is the normal flip-flop mode where Q will toggle between two possible states for
each clock transition.
To make a divide by 4 counter, consider the circuit shown in Figure 1-7A where
Q, and Qp are the outputs. Q, and Qg respond to the clock as shown in Figure 1-7B.
Note that after four clock edges, Q " and QB return to the original state. Further, Q "

changes at exactly half the rate as the input clock and always changes on a positive clock
edge; this is the simple divide by two or flip-flop mode. Qg changes at half the rate of

the Q, output or one fourth the clock rate. Thus, we get a divide by four. The divide by

four works because the outputs of the first FF are tied to the inputs of the B FF. The
necessary condition for the B FF to change state occurs only on every other output state
of FF A.

One subtle point requires comment. On clock edge 2, Qg goes to a 1, but its input

seems to be changing at the same time. Why does it not become confused? In reality,
the JK inputs of B are derived from Q,. Flip-flop A sees the clock pulse at the same

instant as B does, but it takes a finite length of time for Q, to change. Thus, B changes

states based on the original inputs. It is for this reason that counters of this design must
use edge-triggered flip-flops.

Op Qo

L
o]

/\
L

D)

>
=

JTI'
CK K

\
! Clock

Ol
Ol

Time —>
LT Lf1Lf 1T IcCock
BWQA
| ] N

Figure 1-7. Schematic representation of a divide by 4 counter built on flip-flops.
A) Circuit. B) Waveforms in response to clock pulse.
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8 Q
¥

J Q J—Q J Q J}—Dota
_ — — CK = CK
*Q/l\<K Q/;\<K Q/I\K Q/{\K

L Clock

Figure 1-8. Four-bit shift register built from JK flip-flops.
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1.2.6 Shift Registers

Shifting strings of binary numbers is an essential arithmetic and logic operation. In
particular, computers (and humans) do multiplication and division by repeated shift-add
or shift-subtract operations.

A 4-bit shift register is shown in Figure 1-8. While seemingly complex, its opera-
tion is straightforward. Q and Q from the previous stage are applied to the JK inputs of
the next. For the first stage, the input datum is applied directly to the J input, then
inverted and applied to the K input. The FF truth table shows that on each clock transi-
tion Q and Q information from the previous stage gets loaded or shifted into the next FF.

To load four bits of information, apply each bit in turn to the data input and clock it
in by a single clock pulse. Thus, four clock pulses are needed to fully load a 4-bit shift
register. This is called a serial input or serial load shift register. For very high speed cir-
cuits, the time overhead of a serial load can seriously degrade system performance.

To overcome the slowness of a serial load, there are parallel load shift registers
where all bits are presented in parallel. A single load pulse loads all the FFs at once.
Because of the large number of external connections involved, parallel load devices are
usually limited to 4 or 8 bits of data.

1.2.7 Memory

Memory is necessary for storage of program and data. It comes in two basic forms:
random access (RAM) or read only (ROM). Random access memory can be written to
(altered) as well as read back, while ROM has permanent or semipermanent data or pro-
grams in it and can only be read. Actually, both RAM and ROM are random access in
that you can access any location in any order by changing the address. A more accurate
term for RAM is read/write memory, but this is not in common use.

ROM comes in several versions. There is real ROM, which comes from the factory
with the information built directly on the chip. Only if the information is cast in concrete
and you plan to use thousands of this program is ROM attractive; the semiconductor
manufacturers will only make these in quantities of hundreds to thousands. However, for
small users there is PROM or programmable ROM, which is field programmable. Some
of these are erasable either electrically or with ultraviolet (uv) light; you can tell the latter
by the clear window over the chip. You will see PROM or ROM within most computers
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and on many peripheral boards that use dedicated microprocessors to implement the.ir
function and where the microprocessor must know what to do as soon as the system is
turned on. . .

In it simplest form, RAM consists of a two-dimensional array of flip-flops with a
means for selectively storing data in a specific flip-flop and reading it back later. This
configuration is called static since the information is statically held in the flip-flop and
will stay there until you explicitly change it or turn the power off.

Much more prevalent is dynamic memory in which the data are stored as micro-
charges on capacitors; charged corresponds to one state while uncharged is the other.
Since the charge on a capacitor will leak off and disappear after a while, you must refresh
the charge periodically. Typically, this refreshing must be done a thousand times a
second, which is generally a problem for the designer, not the user.

The prevalence of dynamic memory over static arises from its much lower power
consumption, higher memory densities, and lower cost. Dynamic RAM is generally not
as fast as static memory; this is getting to be a problem in many of the very fast new
microcomputers in which computation is being limited by how fast the data can be
fetched or stored in memory.

Memory chips come in a variety of sizes, but with increasingly memory-intensive
software, the bigger the better. About the smallest size useful chip is 256K, with 1M
chips rapidly coming into prominence. Four megabyte chips are in production. A K in

computer notation is 1024 (21% and M or meg is 1,048,576 (229).

1.2.8 Three-State and Open Collector Logic

There are two additional types of logic that are used in computers. These are three-
state logic and open collector logic. Three-state logic is also known as Tri-State logic,
which is the copyrighted name from National Semiconductors. Other manufacturers are
limited to the term three-state logic, although in spoken usage Tri-State and three-state
are used interchangeably.

Three-state and open collector logic are what make modern computer architecture
possible. While open collector has been replaced by three-state logic for new computer
construction, open collector devices still find wide use in the IEEE-488 instrumentation
interface bus.

As the term implies, three-state logic has three possible output states. These are
high, low, and "not there." That is, the device can have the usual high and low or it can
be disconnected from the circuit. The not there state, which is referred to as the high
impedance or off state, is controlled by an additional input to the device. This control is
called the enable. The truth table and schematic of a simple, straight through, noninvert-
ing driver is shown in Figure 1-9. The Z in the output indicates the high impedance or
not there state. The enable input in this case is active high; the device is turned on (ie.,
connects the circuitry to the output) with a high enable signal. Active low circuitry is
also common. The notation on the IC is the invert or circle symbol on the input.

Of what use is this three-state function? The answer is that it allows multiple dev-
ices to sit on a common line, but have only one of them active at a time. Consider Figure
1-10. For simplicity we show only two inputs on a common line, but in a computer
many devices may share a common line. Assume that there are two input signals that



