COMPUTER
GRAPHI-CS

- APROGRAMMING APPROACH

.’

Steven Harrington

b I 4

COMPUTER
GRAPHICS

A Programming Approach

Second Edition

Steven Harrington

Xerox Corporation

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotd Hamburg
London Madrid Mexico Milan Montreal New Delhi Panama
Paris S@o Paulo Singapore Sydney Tokyo Toronto

This book was set in Times Roman by Publication Services.
The editors were Kaye Pace and Larry Goldberg;

the cover was designed by Amy Becker;

the production supervisor was Salvador Gonzales;

new drawings were done by Wellington Studios, Ltd.

R. R. Donnelley & Sons Company was printer and binder.

The cover photo was supplied by Abel Image Research, Los Angeles, California. This still image

is from a 30-second commercial entitled Brilliance. It was produced by Robert Abel & Associates of
Los Angeles for the canned food information council in collaboration with Ketchum Advertising of
San Francisco.

COMPUTER GRAPHICS
A Programming Approach

Copyright © 1987, 1983 by McGraw-Hill, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher.

34567890 DOCDOC 8921098

ISBN 0-07-02k753-7

Library of Congress Cataloging-in-Publication Data

Harrington, Steven.
Computer graphics.

Includes bibliographies and index.

1. Computer graphics. 2. Programming (Electronic
computers) 1. Title.
T385.H34 1987 006.6 86-21295
ISBN 0-07-026753-7

PREFACE

HANDS-ON APPROACH

This book, the second edition of an introductory text on interactive computer graphics,
presents the basic concepts of that field. The approach is somewhat different from that
of previous texts in that it encourages a “hands-on,’’ or “learn-by-doing,”’ attitude.
The book provides guidance for developing a graphics system, suggestions for modifi-
cations and extensions of the system, and application problems which make use of the
system. The advantages of this approach are a high level of student involvement, an
understanding of the systems aspects of graphics software, a realistic feeling for
graphics system capabilities and ease of use, and a greater feeling of accomplishment.

PREREQUISITES

This book is written at a lower level than previous graphics texts. It is intended for stu-
dents with a knowledge of high school algebra, analytic geometry, and trigonometry,
and with at least one high-level language programming course. Although the necessary
information on vectors, matrices, and data structures is presented in the text, students
familiar with these topics will find the material easier to follow. The text should be suit-
able for junior college and undergraduate college levels. Most of computer graphics is
based on the mathematics of analytic geometry; a knowledge of this area is appropriate
and necessary. This book presents a graphics system as a series of programming prob-
lems, so a familiarity with some high-level language is required. The text attempts to
present its algorithms in a language-independent fashion and does not require the
knowledge of any one particular language. It has been used successfully with Pascal,
C, and Fortran.

TIME REQUIREMENTS

The material can be covered at a rate of about one chapter per week. Slightly more
time is needed to cover Chapters 8 to 11. Each chapter also provides a programming as-
signment for a component of the graphics system. The requirement of a weekly pro-

xi

Xxil PREFACE

gram is a heavy but not excessive load for students. If necessary, the less instructive
portions of programming projects may be provided by the instructor. At the end of the
course, students have not only a working knowledge of computer graphics fundamen-
tals but also a graphics system, or a collection of graphics programs, of which they can
rightly be proud. There are several suggested programming problems at the end of each
chapter. Some of these problems are much more difficult than others. The difficult
problems are marked with an asterisk; very difficult problems have two asterisks.

ORGANIZATION

The text is organized so that each chapter introduces a new topic in computer graphics.
The progression is such that new chapters build on previous ones, so the order of pres-
entation is rather fixed. The first chapter begins with a very elementary review of ana-
lytic geometry and a discussion of vector generation. The second chapter considers
line- and character-drawing commands and provides the interface between the specific
display devices being used and the rest of the system. It also presents the basic concept
of the display file, or metafile. The third chapter presents polygon surfaces and the ras-
terization problem. The fourth chapter discusses the basic transformations of transla-
tion, scaling, and rotation. The fifth talks about display file segmentation and visibil-
ity. These first five chapters, dealing with the management and interpretation of the
display file, form a natural group when considering intelligent graphics terminals
which maintain their own display files. The sixth chapter completes the discussion of
two-dimensional graphics with a discussion of windowing and clipping. The instructor
may choose to cover Chapter 6 before Chapter 5. This groups the image construction
topics together, followed by the data structuring topic. In the seventh chapter, interac-
tive techniques are discussed. Here again, routines act as an interface between the rest
of the system and the particular graphics input hardware available. In Chapter 8 the
system is generalized to three-dimensional graphics. The topics of three-dimensional
geometry, viewing transformations, parallel projection, perspective projection, and
three-dimensional clipping are discussed. Chapter 9 considers hidden surface and line
removal. It presents two methods in detail: The first is the simple check for removal of
back faces; the second is a priority sort for implementation of the painter’s algorithm.
The tenth chapter considers shading and color. The eleventh and final chapter consid-
ers the drawing of curved lines and surfaces. Arc generations, interpolations, and frac-
tals are covered.

Throughout the text, the generic masculine pronoun “he” has been used solely
on account of the ease of expression it affords. Such use of the masculine pronoun
should not be interpreted as a wish to exclude women from the use of this text or from
the field in general; in fact, all areas of computer science provide excellent career op-
portunities for women. “The programmer...he” is used only because it is less cumber-
some than “the programmer...he or she.”

RELATION TO STANDARDS

The original edition of this text was modeled after the GSPC CORE system, with ex-
tensions to raster graphics, hidden surfaces, shading, and curves. Although the new

PREFACE Xiil

edition has modified and extended the system, the basic object-oriented structure and
basic input and output primitives have been preserved. Objects are modeled in world-
coordinate space, and views of the objects are transformed to normalized device coor-
dinates. Individual graphics primitives can be grouped into segments. This approach is
common to many of the current standards, so the student will feel at home with the
GKS, PHIGS, CGI, and CGM standards.

SIMPLICITY VS. EFFICIENCY

There are many places in this book where several different algorithms are possible,
where the problem may be solved many different ways. As a rule, only one solution is
presented in great detail, although others may be described. The particular solution
chosen may not be the most clever or the most efficient. The primary objective was not
to create the best graphics system but to teach the basic graphics principles. The al-
gorithms selected are, therefore, those which were felt to most readily convey these
principles and which were easiest to understand.

APPROACHES TO A GRAPHICS COURSE

There are several ways of using this book. One method is to have students implement
the described graphics system. With this approach, the student gets a good understand-
ing of how the components of a graphics system work and interact. Since each exten-
sion builds on the previous week’s work, the instructor may need to provide solutions
to previous assignments. One danger in providing algorithms as complete as those
given here is a temptation to copy them without really understanding them. This
should be countered with classroom explanation and by assigning some of the exer-
cises which are included.

A second approach is to use the presented graphics system as a base for exten-
sions and modifications. Alternative algorithms and methods may be explored. The
book provides a well-documented basic support system, or test bed, on which these
methods can be actually programmed. The actual implementation and use of an ap-
proach can provide insights into the details of its behavior and its system implications,
which may be missed when the algorithm is discussed in isolation. Programming prob-
lems suggesting extensions have been included.

A third approach is to emphasize using a graphics system rather than building
one. With this approach, the algorithms serve as examples of graphics system routines,
but not as implementation guides. Students should have this system or some other
equivalent system available. Classroom lectures can still explain graphics systems and
how they work, but programming projects use these features rather than build them.
Applications-oriented programming problems are provided for this purpose.

CHANGES IN THE SECOND EDITION

Computer graphics is a rapidly developing field, and even though this is an introduc-
tory text, some revision is needed in order to stay current. In addition, weaknesses in
the original text have been addressed. Actual changes include a discussion of the popu-

Xiv PREFACE

lar Bresenham vector generation algorithm; an introduction to antialiasing techniques
and imaging with pixel arrays and patterns; a discussion of the Cohen-Sutherland Out-
code clipping algorithm and use of the Blinn shading model; discussions of ray trac-
ing, halftones, and several color topics; and an introduction to Bezier curves, surface
patches, and fractals. Three-dimensional clipping was included with the other three-di-
mensional extensions in Chapter 8, instead of occupying its own chapter. The hidden
surface and line chapter was completely redone, providing much more discussion of al-
ternate approaches and less on the algorithm details. It follows Fuch’s approach to sort-
ing polygons, simplifying comparison techniques, and does not attempt to discuss
polygon decomposition. Other changes include a greatly expanded set of references,
an increased selection of exercises and programming problems, and an eight-page in-
sert of full-color photographs (Plates 1 to 16) in Chapter 10.

FURTHER SUPPORT

One thing learned through the first edition of the book is that the text creates the need
for information about implementations of the graphics system described. What im-
plementations are available? What languages and computing environments have been
tried? What problems or bugs were discovered? What extensions have been carried
out? With this edition I shall attempt to act as a clearinghouse for this information. As
such, I shall welcome hearing of implementations and requests for implementations.
All inquiries can be sent to Steven Harrington, Xerox Corporation, W128-29E, 800
Phillips Rd., Webster, NY 14580.

APPRECIATION

I would like to express my appreciation and thanks to those who reviewed this edition
of the text: Steve Cunningham, Rollin Dix, William Grosky, David McAllister, and
Spencer Thomas. Their comments and suggestions were very valuable, and I am most
grateful for their assistance.

Steven Harrington

CONTENTS

Preface

Geometry and Line Generation

Introduction

Lines

Line Segments
Perpendicular Lines
Distance between a Point and a Line
Vectors

Pixels and Frame Buffers
Vector Generation
Bresenham’s Algorithm
Antialiasing of Lines

Thick Line Segments
Character Generation
Displaying the Frame Buffer
Further Reading

Exercises

Programming Problems

Graphics Primitives
Introduction

Display Devices

Primitive Operations

The Display-File Interpreter
Normalized Device Coordinates
Display-File Structure
Display-File Algorithms
Display Control

Text

The Line-Style Primitive

Xi

~N W= =

11
11
17
20
21
22
24
26
27
29

33

33
34
37
40
41
42
45
47
49
55

vi

CONTENTS

\

An Application

Further Reading
Exercises
Programming Problems

Polygons

Introduction

Polygons

Polygon Representation
Entering Polygons

An Inside Test

Polygon Interfacing Algorithms
Filling Polygons
Filling with a Pattern
Initialization
Antialiasing

An Application

Further Reading
Exercises
Programming Problems

Transformations

Introduction

Matrices

Scaling Transformations
Sin and Cos

Rotation

Homogeneous Coordinates and Translation

Coordinate Transformations

Rotation about an Arbitrary Point

Other Transformations
Inverse Transformations
Transformation Routines
Transformations and Patterns
Initialization

Display Procedures

An Application

Further Reading

Exercises

Programming Problems

Segments

Introduction

The Segment Table
Segment Creation
Closing a Segment
Deleting a Segment

57
60
61
63

70

70
70
71
72
74
76
79
91
93
94
94
96
97
99

107

107
107
109
112
113
116
118
119
120
122
125
131
136
136
139
140
141
143

146

146
147
149
150
150

CONTENTS Vil

Renaming a Segment 153
Visibility 154
Image Transformation 155
Revising Previous Transformation Routines 157
Saving and Showing Segments 159
Other Display-File Structures 161
Some Raster Techniques 163
An Application 165
Further Reading 166
Exercises 167
Programming Problems 169
Windowing and Clipping 172
Introduction 172
The Viewing Transformation 173
Viewing Transformation Implementation 178
Clipping 181
The Cohen-Sutherland Outcode Algorithm 182
The Sutherland-Hodgman Algorithm 184
The Clipping of Polygons 190
Adding Clipping to the System 195
Generalized Clipping 196
Position Relative to an Arbitrary Line 197
Multiple Windowing 198
An Application 199
Further Reading 200
Exercises 201
Programming Problems 202
Interaction 205
Introduction 205
Hardware 206
Input Device-Handling Algorithms 211
Event Handling 214
Sampled Devices 221
The Detectability Attribute 222
Simulating a Locator with a Pick 225
Simulating a Pick with a Locator 225
Echoing 230
Interactive Techniques ‘ 230
Further Reading 239
Exercises 241
Programming Problems 242
Three Dimensions 244
Introduction 244

3D Geometry 244

vili CONTENTS

10

3D Primitives

3D Transformations

Rotation about an Arbitrary Axis
Parallél Projection

Perspective Projection

Viewing Parameters

Special Projections

Conversion to View Plane Coordinates
Clipping in Three Dimensions
Clipping Planes

The 3D Viewing Transformation
An Application

Further Reading

Exercises

Programming Problems

Hidden Surfaces and Lines

Introduction

Back-Face Removal
Back-Face Algorithms
Z Buffers

Scan-Line Algorithms
The Painter’s Algorithm
Comparison Techniques
Warnock’s Algorithm
Franklin Algorithm
Hidden-Line Methods
Binary Space Partition
An Application

Further Reading
Exercises

Programming Problems

Light, Color, and Shading

Introduction
Diffuse Illumination

Point-Source Illumination

Specular Reflection
Shading Algorithms

Smooth Shading of Surface Approximations

Transparency
Reflections
Shadows

Ray Tracing
Halftones
Color

Color Models

249
251
256
261
264
268
276
279
285
290
298
302
304
305
308

311

311
312
316
319
320
321
322
323
325
326
327
341
341
342
343

345

345
345
348
349
355
362
365
367
368
370
372
376
379

11

Qwm >

Gamma Correction

Color Tables

Extending the Shading Model to Color
Further Reading

Exercises

Programming Problems

Curves and Fractals

Introduction

Curve Generation
Interpolation
Interpolating Algorithms
Interpolating Polygons
B Splines

B Splines and Corners
Curved Surface Patches
Bezier Curves

Fractals

Fractal Lines

Fractal Surfaces

An Application

Further Reading
Exercises

Programming Problems

Appendixes

Information Guide
Pidgin Algol
Graphics on an Alphanumeric Terminal

Index

CONTENTS

ix

388
389
390
391
394
395

397

397
397
400
404
409
410
415
417
420
424
427
431
435
437
441
442

444

444
447
453

459

CHAPTER

GEOMETRY
AND LINE
GENERATION

INTRODUCTION

Perhaps our age will be known as the Information Revolution or the Computer Revolu-
tion, for we are witnessing a remarkable growth and development of computer technol-
ogy and applications. The computer is an information processing machine, a tool for
storing, manipulating, and correlating data. We are able to generate or collect and pro-
cess information on a scope never before possible. This information can help us make
decisions, understand our world, and control its operation. But as the volume of infor-
mation increases, a problem arises. How can this information be efficiently and effec-
tively transferred between machine and human? The machine can easily generate ta-
bles of numbers hundreds of pages long. But such a printout may be worthless if the
human reader does not have the time to understand it. Computer graphics strikes di-
rectly at this problem. It is a study of techniques to improve communication between
human and machine. A graph may replace that huge table of numbers and allow the
reader to note the relevant patterns and characteristics at a glance. Giving the computer
the ability to express its data in pictorial form can greatly increase its ability to provide
information to the human user. This is a passive form of graphics, but communication
can also be a two-way process. It may be convenient and appropriate to input graphical
information to the computer. Thus there are both graphical input and graphical output
devices. It is often desirable to have the input from the user alter the output presented
by the machine. A dialogue can be established through the graphics medium. This is
termed interactive computer graphics because the user interacts with the machine. Com-
puter graphics allows communication through pictures, charts, and diagrams. It offers

2 CHAPTER ONE

a vital alternative to the typewriter’s string of symbols. The old adage ‘‘A picture is
worth a thousand words’’ is certainly true. Through computer graphics we can pilot
spaceships; walk through buildings which have yet to be built; and watch bridges col-
lapse, stars being born, and the rotations of atoms. There are many applications for
computer graphics. Management information may be displayed as charts and dia-
grams. Scientific theories and models may be described in pictorial form. (See Plates 1
through 4.) In computer-aided design we can display an aircraft wing, a highway lay-
out, a printed circuit board, a building *‘blueprint,’’ or a machine part. (See Plate 15.)
Maps can be created for all kinds of geographic information. Diagrams and simula-
tions can enrich classroom instruction. The computer has become a new tool for the
artist and animator. (See Plates 5 through 14.) And in video games, computer graphics
provides a new form of entertainment.

Over the years many graphics display devices have been developed. There are
also many software packages and graphics languages. The problem with such diversity
is that it makes it difficult to transfer a graphics program from one installation to
another. In the late 1970s, the Graphics Standards Planning Committee of the Associa-
tion for Computing Machinery developed a proposal for a standard graphics system
called the CORE system. This system provided a standardized set of commands to con-
trol the construction and display of graphic images. The commands were independent
of the device used to create or to display the image and independent of the language in
which the graphics program was written. The CORE system defined basic graphics
primitives from which more complex or special-purpose graphics routines could be
built. The idea was that a program written for the CORE system could be run on any
installation using that system. The CORE system contained mechanisms for describing
and displaying both two-dimensional and three-dimensional structures. However, it
was developed just before the reduction in the cost of computer memory made possible
economical raster displays (which allow solid and colored areas to be drawn). It there-
fore lacked the primitives for describing areas and could only create line drawings. Ex-
tensions were soon proposed to provide the CORE system with raster imaging primi-
tives.

A second standard called the graphics kernel system (GKS) was developed in
Europe, and it has been steadily gaining in popularity. The GKS system was heavily in-
fluenced by CORE, and the minimal GKS implementation is essentially identical to
CORE’s two-dimensional subset. The GKS standard did contain primitives for imag-
ing areas and colors, but it did not contain the constructs for three-dimensional objects.
It introduced the concept of a workstation, which allowed a single graphics program to
control several graphics terminals.

Another graphics standard is the programmer’s hierarchical interactive graphics
standard (PHIGS). It takes input and output functions and viewing model from CORE
and GKS, but it is a programmer’s toolbox, intended for programming graphics appli-
cations. It contains enhanced graphics program structuring features. Two other
graphics standards are the computer graphics metafile (CGM) and the computer
graphics interface (CGI). The CGM is a file format for picture information that allows
device-independent capture, storage, and transfer. The CGI is a companion standard
which provides a procedural interface for the CGM primitives.

GEOMETRY AND LINE GENERATION 3

In this book we are going to present the algorithms for constructing a graphics
system which have the flavor of the CORE and GKS standards and, in some areas, go
beyond them.

We begin our discussion of computer graphics with the fundamental question of
how to locate and display points and line segments. There are several hardware devices
(graphics terminals) which may be used to display computer-generated images. Some
of these will be discussed in Chapter 2. Before we talk about the devices which display
points, we shall review the basic geometry which underlies all of our techniques. We
shall consider what points and lines are and how we can specify and manipulate them.
We conclude this chapter with a discussion of how the mathematical description of
these fundamental geometric building blocks can be implemented on an actual display
device. Algorithms are presented for carrying out such an implementation for a line
printer or common cathode ray tube (CRT) display. These algorithms will allow us (if
needed) to use the line printer or CRT as a somewhat crude, but effective, graphics dis-
play device for demonstrating the graphics principles described in the rest of the text.

LINES

We can specify a point (a position in a plane) with an ordered pair of numbers (x, y),
where x is the horizontal distance from the origin and y is the vertical distance. Two
points will specify a line. Lines are described by equations such that if a point (x, y)
satisfies the equations, then the point is on the line. If the two points used to specify a
line are (x,, y,) and (X,, ¥,), then an equation for the line is given by

Y™ N _ Y27 N (L)

X — X, Xo — X4

This says that the slope between any point on the line and (x,, y,) is the same as the
slope between (x5, y,) and (X, y).

There are many equivalent forms for this equation. Multiplying by the de-
nominators gives the form

xX=x) (Y2-y) = (y-y) K2 — X)) (1.2)
A little more algebra solving for y gives

Yo — Y1

y=—"7"&=—xp)+y (1.3)
Xy — X
or
y=mx + b (1.4)
where
Y2 — Y1
m —3
X2 — X
and

b=y, — mx

4 CHAPTER ONE

This is called the slope-intercept form of the line. The slope m is the change in
height divided by the change in width for two points on the line (the rise over the run).
The intercept b is the height at which the line crosses the y axis. This can be seen by
noting that the point (0, b) satisfies the equation of the line.

A different form of the line equation, called the general form, may be found by
multiplying out the factors in Equation 1.2 and collecting them on one side of the equal

sign.

Y2-yD X=X =Xx)y + Xy, =Xy, = 0 (1.5)
or
X +sy+t=0 (1.6)
where possible values forr, s, and t are
r = (y2-yv
s = — (X3 —Xy)

t = X3y —X1¥2

We say possible values because we see that multiplying r, s, and t by any common fac-
tor will produce a new set of r’, s, and t’ values which will still satisfy Equation 1.6
and, therefore, also describe the same line. The values for r, s, and t are sometimes
chosen so that

P +s2=1 (1.7)

Comparing Equations 1.4 and 1.6 we see that

and (1.8)
t
b= — —
S

Can we determine where two lines will cross? Yes, it is fairly easy to determine
where two lines will cross. By the two lines crossing we mean that they share some
point in common. That point will satisfy both of the equations for the two lines. The
problem is to find this point. Suppose we give the equations for the two lines in their
slope-intercept form:

line 1: y = mx + b, (1.9)
line 2: y = myx + b,
Now if there is some point (x;, y;) shared by both lines, then
y; = mx; + b, and yi = myx; + b, (1.10)

will both be true. Equating over y; gives
m;X; + bl = mpX; + b2 (111)

GEOMETRY AND LINE GENERATION 5§

Solving for x; yields

b, — b
Xy = et (1.12)
ml - m2

Substituting this into the equation for either line 1 or line 2 gives

b,m; — b;m
yi:i# (1.13)
m; — m;

Therefore, the point

(b, — b, bym, — b1m2> (1.13)

m; — m, m; — m,

is the intersection point. Note that two parallel lines will have the same slope. Since
such lines will not intersect, it is not at all surprising that the above expression results
in a division by zero. When no point exists, we cannot solve for it.

If the Equation 1.6 form is used to describe the lines, then similar algebra yields
an intersection point which is given by

<Slt2 - Sztl tlrz - tzrl> (l 15)

Soly = SiIp SoIp — §iIp

LINE SEGMENTS

What are line segments? Our equations for lines specify all points in a given direction.
The lines extend forever both forward and backward. This is not exactly what we need
for graphics. We would like to display only pieces of lines. Let’s consider only those
points on a line which lie between two endpoints p; and p,. (See Figure 1-1.)

This is called a line segment. A line segment may be specified by its two end-
points. From these endpoints we can determine the equation of the line. From this
equation and the endpoints we can decide if any point is or is not on the segment. If the
endpoints are p; = (x;, y;) and p, = (x,, ¥2) and these yield equationy = mx + b
(orrx + sy + t = 0), then another point p; = (X3, y3) lies on the segment if

1. y3 = mx3 + b(orrxy + sy; + t = 0)
2. min(x, X;) = X3 =< max(x,, x,)
3. min(y,, y;) < y3 < max(y,, y,)

7]

FIGURE 1-1
Py A line segment.

