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I. INTRODUCTION

Take an initially straight rod of circular cross section
which is composed of an isotropic material. Apply an axially
symmetric compressive load to it. In general, the rod will assume
an equilibrating configuration. However, this equilibrium is not
isolated. Because of the symmetry of the rod and the 1load, the
configuration will determine an entire family or "orbit" of other
equilibrating configurations which is gained by rotating the image
of the original configuration about the axis of symmetry through

any angle.

Now perturb the compressive load by additional loads which
break the axial symmetry. How does this perturbation alter the
orbit of equilibrating configurations for the unperturbed problem?
Will the perturbed problem also have an orbit of equilibrating
configurations which is 1in bijective correspondence with the
original orbit, or will the original orbit break or disappear with
the perturbation? To what extent does the alteration of the
original orbit depend upon the material comprising the rod? To
what extent does it depend upon the manner in which the perturbing

load breaks the axial symmetry of the original load?

This work indicates how we can address these questions using

the methods of modern analysis and the theory of singularities or

bifurcations in the presence of symmetry. We direct the work
towards two groups of researchers: mathematicians and
mechanicians. For the mathematician it illustrates how these

tools can contribute greatly towards resolving problems of current
interest in mechanics. Conversely, the rod problem gives the
mechanician a concrete context in which to learn how to apply

these nonlinear mathematical tools.

Generally speaking, we can isolate three aspects of the rod

problem we’ve proposed. First, there is a "symmetric buckling"
problemn. It manifests itself in the buckling of the rod under
axially-symmetric compression. Second, there is a '"pure

orbit-breaking" problem. It occurs prior to the buckling of the



rod, when we fracture the orbit of equilibrating configurations to
the symmetric problem by applying an asymmetric perturbing load.
Finally, there is the "full" or "coupled" problem. We compress
the rod sufficiently to buckle it, while simultaneously exerting
perturbing loads which break the axial symmetry.

The analysis of the symmetric buckling problem has its
origins in Euler’s study of the elastica, with the establishment
of the existence of a positive compression P, at which buckling of
a centerline of a rod first occurs. By 1976 S. Antman and his
associates had begun the analysis of the buckling of a nonlinear
rod with circular cross section under axially-symmetric
compression (see [5], [9]). They used the bifurcation theory of
Crandall and Rabinowitz. In 1985, E. Buzano, G. Geymonat, and T.
Poston applied to S. Antman’s model the symmetric bifurcation
theory developed by M. Golubitsky and D. Schaeffer [23] to study
the buckling of a prismatic rod subject to axially symmetric
compression [4]. In each case there 1is a distinguishing
mathematical feature of the development. While the equations
governing the behavior of the rod maintain their symmetry as the
load increases, equilibrating configurations arise which exhibit

less symmetry than the equations.

The "pure orbit-breaking" problem differs from the first
problem in that the perturbing load actually breaks the symmetry
of the equations governing the behavior of the rod. The
perspective which we wish to use to analyze it was developed in
1983 by D. Chillingworth, J. Marsden, and Y. Wan in [1, 2, 3] to
study Stoppelli’s Problem, which is a problem in the
three-dimensional theory of elasticity where analogous questions
arise. Their contribution was to reformulate the
symmetry-breaking problem as a problem of bifurcation defined on a
manifold which was a group. The formulation then allows us to use
the theory of singularities and bifurcation to carry out the

analysis.

The results for these two aspects suggest that we may analyze

the full problem by formulating it as a bifurcation problem on a



space which is a semidirect product of a group and a vector space

on which the group acts by means of a representation.

In this work we take the first step towards analyzing the
full problem. First, we formulate as bifurcation problems all
three aspects of the rod problem, under the assumptions of the
Kirchhoff rod theory. We present the model for the rod in the
Kirchhoff theory, formulate the equilibrium problem in a
variational setting, and extract from the equilibrium problem the
pure orbit-breaking problem, the pure symmetric buckling problen,

and the full problem as bifurcation problems.

We then adapt the approach of [1, 2, 3] to analyze the pure
orbit-breaking problem for the rod. The analysis predicts how an
orbit of equilibrating configurations generated by the straight
configuration for a rod in the Kirchhoff theory subject to an
axially symmetric compressive load alters when we perturb the
given load by dead loads which break the axial symmetry. The
methods lead to a classification of the perturbing loads. For
each type of perturbing load in the classification we determine
whether or not the orbit of equilibrating configurations for the
unperturbed problem breaks. If it does, we determine
qualitatively how the orbit alters. We also determine whether or
not the alteration depends upon the material comprising the rod.
If it does, we examine whether the alteration is determined by the
first-order (linear) approximation to the response of the
material, or by the higher-order (nonlinear) approximations to the
response. We illustrate these conclusions wusing specific

perturbing loads.

We then comment on how we may use the notion of "unfoldings"
in the theory of bifurcation to begin to analyze the full problem.

The comments indicate what obstructions we encounter when we try

to carry out the analysis. We close by summarizing the open
questions, and by indicating some avenues for further
investigation.

To apply the methods of the singularity theory we must
formulate the rod problem in the language of modern analysis.



Consequently, in Sections 2 through 4 we develop in detail the
equilibrium problem for a rod in the special Cosserat and the
Kirchhoff theories as a problem involving a mapping between
manifolds of functions. The formulation extends to a global
setting the analytical formulation of the equilibrium problem for
the two theories given by S. Antman in [9]. The models are
examples of the general Hamiltonian structure for a rod model in

the convective representation of [33] §6.

In Section 2 we present the geometry of the manifolds of
configurations for a rod in the two theories. In Section 3 we
specify the kind of perturbing loads we will examine (Assumption
3.2), and present the geometry of the spaces of admissible loads
for each of the two theories. In Section 4 for each theory we
show how the system of ordinary differential equations specifying
an equilibrium configuration for the rod determines a mapping from
the manifold of configurations into the space of loads (Theorem
4.20). Restricting attention to the Kirchhoff theory and assuming
the material comprising the rod is hyperelastic, we extract from
the equilibrium problem the general symmetry-breaking problem of
interest as a problem of finding the singularities of a function

(Problem 4.25), which is a particular type of bifurcation problem.

The development in Sections 2 and 3 is directed prinicipally
towards mechanicians. Readers interested principally in the
analysis of the mathematical model, and not in its development may

pass directly to Section 4 with only a modicum of discomfort.

In Sections 5 through 7 we analyze Problem 4.25. In Section
5 we reduce the problem from one defined on a function space to
one which is specified on a finite dimensional space. How the
problem reduces depends upon the pressure of the compressive load.
We examine the reduction for two cases: when the pressure
approaches the value at which the rod first begins to buckle
(Theorem 5.18), and when the pressure is at the first buckling
value (Theorem 5.24). From the two reductions we formulate three
finite-dimensional bifurcation problems (Problems 5.20, 5.26, and
5.27). They constitute the three aspects of the rod problem we
presented at the beginning of the introduction.



We then restrict attention to the analysis of the pure
orbit-breaking problem (Problem 5.20). We use the orbit generated
by the straight configuration of the rod as the trivial orbit of
equilibrating configurations for the bifurcation problem. How we
proceed to resolve the reduced problem depends upon the nature of
the perturbing load. 1In Section 6 we produce a classification
for the perturbing 1loads (Theorem 6.20). In Section 7 we
determine how the trivial orbit of equilibrating configurations
for the symmetrically loaded problem alters for each type of
perturbing load arising from the classification theorem (Theorems
7.6, 7.10, and 7.11). Some types of perturbing loads alter the
orbit in a way which is independent of the material comprising the
rod. Other types alter the orbit in ways which are determined by
the first-order (linear) approximation of the response of the
material comprising the rod, where the approximation is taken
relative to the trivial configuration. Still other types of
perturbing loads alter the orbit in ways which are determined by
the higher-order (nonlinear) approximations to the response of the
material comprising the rod taken relative to the trivial

configuration.

To aid the comprehension we illustrate the principal results
of Sections 3, 6 and 7 using specific perturbing loads. In
Section 3 we present a variety of three-dimensional force
distributions which produce the kind of rod 1loads we are
admitting as perturbations (Examples 3.18-3.21). 1In Section 6 we
illustrate the classification theorem by classifying the rod loads
that were presented in Section 3 (Examples 6.21-6.24). 1In Section
7 we illustrate the various conclusions about how the orbit alters
and what factors influence the alteration using the specific rod
loads which were classified in Section 6 (Examples 7.14-7.17).
Example 7.17 and the subsequent remarks are particularly

worthy of note.

In Section 8 we comment on how we may begin to analyze the
full problem (Problem 5.26) using the notion of unfoldings in the
bifurcation theory. The comments indicate what obstructions we

encounter using this perspective, and ways by which we may



overcome them. We close by some other problems which may be

investigated using the singularity theory.
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II. THE SPACES OF CONFIGURATIONS

In this section we specify the spaces of configurations and
strains for the rod in the special Cosserat and the Kirchhoff
theories. We obtain kinematic models for the two rod theories in
the spatial and convective representations of [33]. We relate
their descriptions to the more classical descriptions in terms of
director vectors. We examine some geometric features of the
spaces which will be of importance in the latter sections.
Finally, we dgeneralize the differentiability class of the

configurations.

II.1. The Spaces of Classical Configurations for a Rod

Fix an origin and a triad ({ g) | 3 =1, 2, 3 ) of orthonormal
vectors in the physical space E°. View a rod as a slender
three-dimensional body B whose image in a reference configuration
is a circularly cylindrical solid of length 1 and radius R, and
whose line of centroids lies along the e axis with its left end
at the origin. Identify a material point p in B with its
coordinates X = (XI,XZ,S) in the reference configuration.
Identify the parameter S, 0 = S = 1, with the corresponding point
(0,0,S) on the line of centroids, or centerline for the rod. For

S fixed, call the planar surface

1y 2 2

B(S) = ( X = (X,X5,8) | (x)? + (x)? =RrR® )

the material cross section for the rod at the point S on the

centerline.

As in [6] view a rod theory as describing the behavior of a
constrained three-dimensional material body. Assume that a
configuration such a constrained body can attain is determined by
specifying a position vector function x(S) and a pair of
orthonormal vector functions ga(S), a =1, 2. Interpret x(S) as



specifying the position of the centerline points in the new
configuration, and interpret the ga(S) as determining the
orientation of the plane of the section 3B(S) in the new

configuration and a line in the plane.

The relation expressing how x and the ga specify a
configuration ¥ for the three-dimensional body can be quite
general (see [6], p. 323). For convenience, assume a particularly

simple, but acceptable relation:
£(x',x%,8) = x(s) + ¢%(x',%°,8)a_(s), (2.1)

where the summation is implied. The development we present

remains valid for more general expressions.

As (2.1) indicates, the vector functions characterize those
three-dimensional configurations for the rod for which the
centerline may flex, twist, and elongate, and the cross sections
for the rod may rotate and shear relative to the centerline.
However, the cross sections remain planar and undistorted in

shape.

From the three-dimensional invertibility condition ([6],

pP. 312) require
x’(s)-d (S) X d (S) = 0, (2.2)

or that the tangent to the centerline not lie in the plane of the

cross section in any configuration.
For x, ga satisfying (2.2), define
d,(S) = sgn(x’(S)+d (5) X d,(S))d (S) X d (S). (2.3)

Then (gj| j =1, 2, 3 )} form an orthonormal triad of vector

functions, and

x’(S)+d (S) > O. (2.4)



Call a collection { x, gj, j =1, 2, 3 } of c* vector functions
satisfying (2.2) through (2.4) a c* configuration for the rod in

the special Cosserat theory.
A particular case of (2.2) is the requirement
| x’(8)+d,(S) X d(s) | = 1. (2.5)
As (2.1) indicates, vector functions satisfying (2.5) describe

configurations for the rod 1in which the <centerline is
inextensible, and cross sections do not shear relative to the

centerline. Call (2.5) the Kirchhoff hypothesis, and call a
collection ( x, Qy j =1, 2, 3 ‘ } of c®* vector functions
satisfying (2.3) through (2.5) a C'configuration for the rod in
the Kirchhoff theory. Notice that x’(S) = ga(S) for such a
configuration.

We now represent the space of all c* configurations for the
rod in either theory in a manner which will allow us to take
advantage of the elements of modern analysis. First, we
simplify the description of a rod configuration by introducing

orthogonal transformation-valued functions.

2.1 Lemma. Let k be an integer, k z 1.

a) Let O(E3) be the space of orthogonal linear
transformations of E° for the given origin. Let ¥(S) € O(E3)
be a C* function on I = [0,1]. Then ¥ determines a unique c
configuration in the Kirchhoff theory for which the left end
of the centerline for the rod is fixed at the origin, and
conversely.

b) Let x = (x,¥), where x(S) € E’ and ¥(S) € O(Ea) are c*
functions on I satisfying

7(S)e, x’ (S) > 0. (2.6)

Then x determines a unique c* configuration in the special

Cosserat theory, and conversely.
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Proof.

a) Given 7y, define x(S) and gJ(S) by requiring

4,(s) = w(s5)e, 3 =1, 2, 3, (2.7)
x(s) = J d (t)dt = J v(t)e,at. (2.8)
o o
Then x’(S) = ga(S), and conditions (2.3) through (2.5) follow.
Also, x(0) = 0 e E>. Conversely, given (2.3) through (2.5) and
x(0) = 0, we can solve (2.7) uniquely for ¥(S). Since
x’ (8) = ga(S), (2.8) follows. If the vector functions are Ck,
then 7y is also.
b) Given x = (x,7), define the vector functions by (2.7). By

(2.6), the vector functions will satisfy (2.2) through (2.4).
Conversely, given the vector functions, (2.7) specifies y. If the

. k .
vector functions are C, then y is also. =

2.2 Definition. Let k =z 1, and let I = [0,1].
a) Take the space of c* configurations in the Kirchhoff
theory for a rod with its left end fixed at O € E’ to be

M = C*(I,0(E%)).

b) Take the space of e* configurations for a rod in the
special Cosserat theory to be

N={(x=(x,7) € C(I,E° X O(E’) | (2.6) holds }. =
2.3 Lemma. For k z 1, M and N are differentiable manifolds.

Proof.

a) By [7] & 4.4, O(E% is a closed submanifold of the Banach
space L(E%. By [8] § 13, it then follows that M is a closed
submanifold of the Banach space Ck(I,L(E3)).

b) From part a), c*(I, E’® X 0(E’)) = c*(1,E®) X c*(1,0(E%) is a
product manifold. Condition (2.6) characterizes N as an open set
in this manifold; hence, it is a differentiable manifold. =
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Remark. The Euler angles are a coordinate system on a portion of
0(E3). By [8], p. 50, c® curves of Euler angles can be used to
construct a coordinate system over a portion of Ck(I,O(Ea)). It
is this coordinate representation on M which is used in [4], [9],

and [10] in their studies of rod problems.

We close the subsection by identifying groups of

transformations which act effectively on M and N.
2.4 Definition. Let

SO(3) = { Q € O(E’) | det Q = +1 },
0(2) = { QeO(E’) | e, = e, },
S0(2) = 0(2) n SO(3).

Let R, J € 0(2), I, e O(E’) be defined by

R e = -e
n=o =a’

Je = -e , Je_ = e_,
=1 =1 =2 =2
e =e , XTe = -e,
3= o 3=3 =3

for a = 1, 2. Denote by <23> and <JZj> the subgroups generated by
the elements enclosed in the bracKkets (or equivalently, the
smallest subgroups of O(EB) containing the elements enclosed in

the brackets. Set

G, = <0(2),%>,
I =G n SO(3),
no= O(E’) «x G,
M = 0(E’) x T,

I = S0(3) x G,

where the latter three groups are external direct product groups,
and the latter two groups are subgroups of Hf
a) For g = (Q1’Qz) € Hl, for T € L(Ea), define g-:T € L(E3)

by

_ T
g-T =0QTQ,.
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b) For g e« H1‘ ¥y € M and x = (x,¥y) € N, define

=9J M and =97 e N b
gv g7 € gx gX hd

(Tg¥)(5) = g-7(S) (2.9)
(5792.’)(5) = (Q,x(S),g¥(S)). = (2.10)

2.5 Lemma. II1 acts on M and N as a group of transformations.
a) TI1 acts effectively on N, in that ﬂgx = x, Vx € N iff
g=(1,1) € Hf
b) Let

H={gell | ﬂgr =9, V¥ € M }.

Then H = <(-1,-1)>.

c) I and Hs each act effectively on M.

Proof. Equations (2.9) and (2.10) imply that II1 acts as a group

of transformations on M and N. Since O(Ea) acts effectively on

R3, the equations also imply that I'I1 acts effectively on N.

b) Let g = (Ql,QJ. By choosing in turn 7(S) = QT and 7(S) =Q

fixed, but arbitrary, (2.9) implies g € H if and only if Q =9
and Q1 commutes with all elements of O(EB), or equivalently,
belongs to the center of O(E3). As <-1> is the center of O(E%
(see [7], chapter 4), part b) follows.

c) As H is a normal subgroup of Hl, the factor group TH/H acts
effectively on M under the induced action. Hence, it suffices to

show that H1 is isomorphic to the direct sums

II. ~TTeH=T e H.
1 s

We establish the first direct sum. The second follows by an
analogous argument. As H constitutes the center of Hl, the
subgroups 1T and H commute. Since I' is contained in SO(3), the

intersection of T and H is trivial. So Ml e H is a subgroup of Hf
Finally, for g = (Q,Q) € T, <I>g=((deth)g,(deth)(l,l))
specifies a group homomorphism of II1 onto T e H, giving the
isomorphism. The induced action of the factor group then may be

identified with the action of M on M given by (2.9). =



