Capital Investment Decision Analysis for management and engineering

John R. Canada - John A. White

Capital Investment Decision Analysis for management and engineering

John R. Canada

North Carolina State University Raleigh, NC

John A. White

Georgia Institute of Technology Atlanta, GA

Library of Congress Cataloging in Publication Data

Canada, John R
Capital investment decision analysis for management and engineering.

Edition of 1971 published under title: Intermediate economic analysis for management and engineering.
Bibliography: p.
Includes index.
1. Capital investments--Evaluation. I. White,
John A., 1939- joint author. II. Title.
HG4028.C4c3 1980 658.1'527 79-21228
ISBN 0-13-113555-4

Editorial/production supervision and interior design by STEVEN BOBKER Manufacturing buyer: GORDON OSBOURNE

©1980 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book may be reproduced in any form or by any means without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

preface

This book is an extensive revision of *Intermediate Economic Analysis for Management and Engineering*, published by Prentice-Hall in 1971. It continues as a text and reference on capital project economic evaluation that is more concise and yet more advanced than the traditional applied works and that contains abundant example problems and solutions.

In addition to concisely covering the basic principles of interest computations and basic analysis methods, this book extensively treats techniques for the quantitative analysis of investment problems involving risk and uncertainty. Almost all of these techniques are candidates for straightforward and widespread application in practice, while some are presented in the belief that they will prove valuable as progressive analysts and management personnel work to develop their usefulness. This book is significantly more complete than its predecessor because of the inclusion of additional quantitative techniques, particularly mathematical programming for handling capital budgeting problems, and sensitivity and risk analysis techniques.

The book is intended primarily for advanced undergraduate or graduate study and for students of all disciplines, particularly business and engineering. The concise explanatory features also make the book suitable as a reference in industry. It contains a rather succinct summary of basic capital project evaluation techniques (Part I), and it emphasizes more advanced techniques, concepts, and analysis procedures (Parts II and III).

For the use of Part I, only a knowledge of first year algebra is required, while for much of Parts II and III it is assumed that the student understands the basic analysis procedures of Part I and has a fair knowledge of elementary probability. Some fundamental probability concepts are explained in the text, but those who need further background will find that the first half of most probability and statistics texts will provide adequate review material. Com-

xviii Preface

plete understanding of the application of some specialized quantitative techniques to investment economic analyses will be facilitated by prior exposure to the theory underlying those techniques. For an abbreviated first course on the fundamentals of engineering or project economy, Part I can serve as an applications-oriented text which contains essentially the same breadth of coverage as traditional undergraduate texts. The integration of project economic analysis into the larger picture of capital budgeting within the firm is accomplished in Chapter 10, which contains an appendix on procedures and forms used in practice.

For a course in economic evaluation of alternative projects at the advanced undergraduate or initial graduate level, Part I can be used for review purposes as needed, with Parts II and III providing the primary study material. Since the chapters in Parts II and III are largely independent of one another, one can include or delete chapters according to the needs of individuals or classes.

Chapter 11 introduces risk and uncertainty concepts with some emphasis on estimating. Chapter 12 illustrates a wide range of tabular and graphical menas for exploring sensitivity. Chapters 13 and 14 include techniques for considering variability of outcomes, particularly when probabilities can be estimated. Chapter 15 provides a rather detailed explanation of decision techniques utilizing Bayesian statistics; Chapter 16 focuses on the use of decision tree concepts as a means of taking into account future outcomes, alternatives, and decisions in determining the best initial choice. Chapter 17 presents optimization models for replacing assets that either deteriorate gradually or fail suddenly. Chapter 18 provides useful concepts and solution techniques for applying mathematical programming to capital budgeting analyses involving interrelated sets of alternatives. Chapter 19 illustrates simple quantitative means for weighting objectives and nonmonetary factors.

Innumerable persons—friends, colleagues, and helpers—have contributed to the development of this work, so complete acknowledgment is not possible. Once again, the preparation of this work was made much more tolerable than would have otherwise been possible by the extremely competent secretarial services of Mrs. Martha Jackson and Mrs. Vicki DeLoach. Our wives, Wanda and Mary Lib, helped by providing encouragement and (usually) good working conditions. Dr. Jack Turvaville of Tennessee Technological University and Mr. Nathan Wolf of the International Business Machines Corporation supplied valuable additions to the book. To all these, as well as to the authors and publishers providing reprint permissions, and to many others unnamed, we wish to express our gratitude.

John R. Canada John A. White

contents

Preface, xvii

PART I BASIC CAPITAL PROJECT EVALUATION TECHNIQUES, I

Chapter 1 Introduction and Cost Concepts, 3

Generation of Alternatives, 6
Importance of Estimates in Economic Analyses, 6
Cost Concepts, 6
Cost Factors, 14
Objectives of Firm and Nonmonetary Factors, 14
The Role of the Engineer and Manager in Economic Decision-Making, 15
Scope and Importance, 15
Problems, 16

APPENDIX 1-A ACCOUNTING FUNDAMENTALS, 19

viii Contents

Chapter 2 Computations Involving Interest, 23

Equivalence, 23 Interest Calculations, Compound Interest Formulas, 25 Interest Formulas Relating Present and Future Sums, Applying Interest Formulas to Cash Flow Series, Interest Formulas Relating Uniform Series of Payments to Their Present Worth and Future Worth, Interest Factor Relationships. Interest Formulas for Uniform Gradient Series, 31 Interest Formulas for Geometric Series, 32 Solved Problems. Deferred Uniform Payments, 38 Compounding Frequency; Nominal and Effective Rates, Continuous Compounding Interest Formulas, Continuous Payments Throughout the Year, Solved Problems, 43 Problems, 47

Chapter 3 Equivalent Worth Methods for Comparing Alternatives, 51

Measures of Economic Effectiveness, 52
Defining Investment Alternatives, 52
A Systematic Procedure for Comparing Investment Alternatives, 53
Judging the Economic Worth of Investment Opportunities, 54
Present Worth (P.W.) Method, 55
Study Period in Comparisons of Alternative Projects, 56
Comparing Alternatives Using Present Worth Analysis When Receipts and Disbursements Are Known, 56
Comparing Alternatives Using Present Worth Analysis When Receipts Are Constant or Not Known, 57
Annual Worth (A.W.) Method, 58
Calculation of Capital Recovery Cost, 58
Comparing Alternatives Using Annual Worth Analysis When

Comparing Alternatives Using Annual Worth Analysis When Receipts and Disbursements Are Known, 59 Comparing Alternatives Using Annual Worth Analysis When

Comparing Alternatives Using Annual Worth Analysis When Receipts Are Constant or Not Known, 60

Comparing Alternatives Using Future Worth Analysis When Receipts and Disbursements Are Known, 62 Comparing Alternatives Using Future Worth Analysis When Receipts Are Constant or Not Known, 63

Assumptions in Comparisons of Alternatives with Different Lives, 64

Relationship of Various Analysis Methods, 65 Problems, 66

Chapter 4 Rate of Return Methods for Comparing Alternatives, 71

Computation of Internal Rate of Return (I.R.R.) for a Single Investment Opportunity, 72

Principles in Comparing Alternatives by the Rate of Return Method,

Alternative Ways to Find the Internal Rate of Return on Incremental Investment, 73

Comparing Alternatives When Receipts and Disbursements Are Known, 74

Comparing Numerous Alternatives, 76

Comparing Alternatives When Disbursements Only Are Known,

Differences in Ranking of Investment Opportunities, 79

Problems in Which Either No Solution or Several Solutions for Rate of Return Exist, 80

Explicit Reinvestment of Rate of Return Method, 81

Comparing Alternatives Using the Explicit Reinvestment Rate of Return Method, 82

Comparing Alternatives When Disbursements Only Are Known, 83

External Rate of Return (E.R.R.) Method, 84

Comparing Alternatives Using the External Rate of Return Method, 86

Comparing Alternatives When Disbursements Only Are Known, 87

Comparing Numerous Alternatives for Which Disbursements Only Are Known, 88

Problems, 88

APPENDIX 4-A USE OF E.R.R. METHOD TO OVERCOME MULTIPLE SOLUTIONS DIFFICULTY WITH THE I.R.R. METHOD, 92

X Contents

Chapter 5 Benefit-Cost Ratio Methods of Comparing Alternatives, 95

Computation of B/C for a Single Investment Opportunity, 97 Comparing Alternatives Using Benefit-Cost Analysis When Receipts and Disbursements Are Known, 97

Comparing Numerous Alternatives, 98

Comparing Alternatives When Disbursements Only Are Known, 99

Which Method of Comparing Alternatives Should Be Used?, 100 Problems, 103

Chapter 6 Consideration of Income Taxes and Depreciation, 106

Introduction to Depreciation, 106

Units-of-Production Depreciation, 111

Choosing a Depreciation Method, 112

Items Not Depreciable for Tax Purposes, 113

Useful Life and Salvage Value for Tax Purposes, 113

Main Types of Taxes, 114

When Income Taxes Should Be Considered, 114

Understanding Income Taxes, 115

Some Basic Principles Relating to Income Taxes, 115

Taxable Income of Individuals, 116

Taxable Income of Business Firms, 116

Income Tax Effects and Rates, 117

Taxes on Capital Gains and Losses for Individuals, 121

Taxes on Capital Gains and Losses for Corporations, 122

Gains and Losses for Disposal of Depreciable Property, 124

Investment Tax Credit, 125

Tabular Procedure for Computing After-Tax Cash Flow, 127 Illustration of Computations of After-Tax Cash Flows for Various

Common Situations, 128

Illustration of After-Tax Analyses Using Different Economic Analysis Methods, 131

Illustration of After-Tax Analyses with Receipts Known, Different Lives, Capital Gains and Capital Losses, and Applicable Investment Tax Credits, 133

Tax Rates on Gains or Losses on Disposal of Old Assets, 135 Problems, 137 *Contents* xi

Chapter 7 Replacement Analyses, 142

Importance of Replacement Studies, 142
Causes of Retirement, 143
Replacement Considerations and Assumptions, 143
Salvage Value of Old Asset in Trade-In, 144
Specifying the Planning Horizon for a Replacement Study, 144
Cash Flow Approach, 146
Indefinite Planning Horizon, 149
Asset Life Types, 150
Calculation of Economic Life—New Asset by Itself, 151
Calculation of Remaining Economic Life—Existing Asset, 155
Relationship of Economic Life to the Planning Horizon, 159
Intangibles in Replacement Problems, 161
Models for Replacement Analysis, 161
Problems, 161

APPENDIX 7-A THE MAPI METHOD FOR REPLACEMENT AND GENERAL INVESTMENT ANALYSES, 165

Chapter 8 Analyses for Government Agencies and Public Utilities,

Investments by Government Agencies, 172 Characteristics of Privately Owned Public Utilities, 178 Problems, 189

Chapter 9 Estimating for Economic Analyses, 195

Consideration of Inflation, 195
Estimating—Difficulty and Perspective, 201
Estimation Reliability, 202
Sources of Data, 203
Ways Estimates Are Accomplished, 209
The Delphi Method of Estimating, 209
Quantitative Techniques, 211
Problems, 218

xii Contents

Chapter 10 Capital Planning and Budgeting, 223

Soruces of Funds, 224
Identification and Evaluation of Opportunities, 224
Minimum Requirements of Acceptability, 225
Project Selection, 228
Postmortem Review, 233
Budget Periods, 234
Timing of Capital Investments and Management Perpective, 235
Leasing Decisions, 235
Capital Expenditure Practices and Example of Forms for Analysis, 238
Problems, 240

APPENDIX 10-A GIDDING & LEWIS DCF INVESTMENT EVALUATION PLAN, 242

Introduction, 242
Policy for Use, 243
Approvals, 243
Post Audit, 243

PART 2 CAPITAL PROJECT EVALUATION UNDER RISK AND UNCERTAINTY CONDITIONS, 249

Chapter 11 Introduction to Risk and Uncertainty, 251

Difference between Risk and Uncertainty, 251
Causes of Risk and Uncertainty, 253
Weakness in Probabilistic Treatment of Project Analyses Involving Risk, 255
Ways to Change or Influence Degree of Uncertainty, 255
Return, Risk, and Choice, 256
Decision Guides on When and How Much to Consider Risk and Uncertainty, 257
General Model for Risk and Uncertainty Problems, 261
Estimating in Terms of Probability Distributions, 262
Responses to Risk and Uncertainty, 268
Problems, 269

Contents xiii

Chapter 12 Sensitivity Analysis, 272

One-At-A-Time Procedure, 273 Multiparameter Procedures, 278 Problems, 283

Chapter 13 Risk Analysis, 287

Problems, 310

sure of Merit,

Problems, 337

Analytical Methods, 288
Monte Carlo Simulation, 298
Generation of Random Normal Values, 301
Generation of Uniformly Distributed Values, 303
Use of Computers, 309
Method for Determining Approximate Number of Monte Carlo
Trials Required, 309
Limitations, 310

APPENDIX 13-A COMPUTER SIMULATION LANGUAGES AND INFORMATION ON AVAILABLE PROGRAMS FOR CAPITAL INVESTMENT ANALYSIS, 315

Chapter 14 Decision Criteria and Methods for Risk and Uncertainty, 317

General Model for Risk Problems, 318

332

Decision Criteria, 318

Dominance Criterion or Elimination Check, 318

Aspiration Level Criterion, 319

Most Probable Future Criterion, 320

Expected Value Criterion, 320

Expectation-Variance Criterion, 321

Certain Monetary Equivalence Criterion, 324

Expected Utility Criterion, 324

Expectation and Variance Criteria Applied to Investment Prospects with One or More Discrete Probabilistic Variables or Elements, 330

Comparing Alternatives with Continuous Distributions of Mea-

Miscellaneous Decision Rules for Complete Uncertainty, 333

xiv Contents

Chapter 15 Statistical Decision Techniques, 343

Bayesian Statistics, 344
Expected Value of Perfect Information, 348
Classical and Bayesian Statistical Decision Approaches Compared, 359
EOL with Continuous Distribution of Outcomes, 362
Problems, 366

Chapter 16 Decision Tree Analysis, 370

Deterministic Example, 371 Deterministic Example Considering Timing, Consideration of Random Outcomes, 373 Typical Problem and Solution, Decision Tree Steps, 377 General Principles of Diagramming, 377 Use of Bayesian Method to Evaluate the Worth of Further Investigation Study, 378 Useful Notation Conventions. 382 Alternate Method of Analysis. 383 Certain Monetary Equivalents, 385 Stochastic Decision Trees, 387 Examples of Decision Tree Applications, Advantages and Disadvantages of Decision Tree Analysis, Summary, 394 Problems, 394

PART 3 SELECTED TOPICS FOR ECONOMIC EVALUATION OF INVESTMENT DECISIONS,

Chapter 17 Replacement Models, 403

Replacement of Assets Not Subject to Sudden Failure, 403 Replacement of Assets Subject to Sudden Failure, 411 Problems, 417

Chapter 18 Mathematical Programming for Capital Budgeting, 420 Indivisible, Independent Investment Opportunities, 420 Indivisible, Dependent Investment Opportunities, 420

Contents

Independent Collections of Mutually Exclusive Opportunities,
424
Divisible Investment Opportunities, 428
The M.A.R.R. Controversy, 431
Capital Rationing, 432
Portfolio Selection, 434
Goal Programming, 437
Problems, 443

Chapter 19 Consideration of Multiple Objectives and Criteria, 447

Alternatives–Objectives Score Card, 448
Indifference Curves, 448
Ordinal Scaling, 450
Weighting Factors, 451
Weighted Evaluation of Criteria, 454
Multi-Criteria Utility Models, 455
Summary, 463
Problems, 464

APPENDICES, 467

APPENDIX A TABLES OF DISCRETE COMPOUNDING INTEREST FACTORS (FOR VARIOUS COMMON VALUES OF i FROM 1% TO 50%), 469

APPENDIX B TABLES OF CONTINUOUS COMPOUNDING INTEREST, 491

APPENDIX C TABLE OF RANDOM NUMBERS, 498

APPENDIX D TABLE OF RANDOM NORMAL DEVIATES, 499

APPENDIX E UNIT NORMAL LOSS INTEGRAL (UNLI), 500

APPENDIX F THE STANDARDIZED NORMAL DISTRIBUTION FUNCTION, f(S), 501

APPENDIX G GLOSSARY OF COMMONLY USED SYMBOLS AND TERMINOLOGY, 502

BIBLIOGRAPHY, 503

REFERENCES, 504

ANSWERS TO SELECTED EVEN-NUMBERED PROBLEMS, 517

PART 1

Basic Capital Project Evaluation Techniques

Chapter

1

introduction and cost concepts

Project economic analysis involves techniques for comparing and deciding between alternatives on the basis of monetary or economic desirability. With the increasing complexity of our industrial technology, economic decision-making is becoming more difficult and at the same time more critical. Economic analyses serve to quantify differences between alternatives and reduce them to bases which provide for ease of project comparison. The importance of use of these methods varies with alternatives under consideration. In general, the use of these techniques is vitally important, for there is much to be saved or lost by virtue of the particular alternative chosen in usual project investment decisions. Indeed, project investment decisions are critically important factors in determining the success or failure of a firm.