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Preface

This book is based on my lecture notes for a ten-week second course
on feedback control systems. In our department the first control course
is at the junior level; it covers the basic concepts such as dynamical
systems modeling, transfer functions, state space representations, block
diagram manipulations, stability, Routh-Hurwitz test, root locus, lead-
lag controllers, and pole placement via state feedback. In the second
course, (open to graduate and undergraduate students) we review these
topics briefly and introduce the Nyquist stability test, basic loopshap-
ing, stability robustness (Kharitanov’s theorem and its extensions, as
well as H*°-based results) sensitivity minimization, time delay systems,
and parameterization of all stabilizing controllers for single input-single
output (SISO) stable plants. There are several textbooks containing
most of these topics, e.g. (7, 17, 22, 37, 45]. But apparently there are
not many books covering all of the above mentioned topics. A slightly
more advanced text that I would especially like to mention is Feed-
back Control Theory, by Doyle, Francis, and Tannenbaum, [18]. It is
an excellent book on SISO H*°-based robust control, but it is lacking
significant portions of the introductory material included in our cur-
riculum. I hope that the present book fills this gap, which may exist in
other universities as well.

It is also possible to use this book to teach a course on feedback con-
trol, following a one-semester signals and systems course based on (28,
38], or similar books dedicating a couple of chapters to control-related
topics. To teach a one-semester course from the book, Chapter 11
should be expanded with supplementary notes so that the state space
methods are covered more rigorously.



Now a few words for the students. The exercise problems at the end
of each chapter may or may not be similar to the examples given in
the text. You should first try solving them by hand calculations; if you
think that a computer-based solution is the only way, then go ahead
and use MATLAB. I assume that you are familiar with MATLAB; for
those who are not, there are many introductory books, e.g., [19, 23, 44].
Although it is not directly related to the present book, I would also
recommend [52] as a good reference on MATLAB-based computing.

Despite our best efforts, there may be errors in the book. Please
send your comments to: ozbay.1@osu.edu, I will post the corrections
on the web: http://eewww.eng.ohio-state.edu/ ozbay/ifct.html.

Many people have contributed to the book directly or indirectly. I
would like to acknowledge the encouragement I received from my col-
leagues in the Department of Electrical Engineering at The Ohio State
University, in particular J. Cruz, H. Hemami, U. Ozgﬁner, K. Passino,
L. Potter, V. Utkin, S. Yurkovich, and Y. Zheng. Special thanks to
A. Tannenbaum for his encouraging words about the potential value
of this book. Students who have taken my courses have helped signific-
antly with their questions and comments. Among them, R. Bhojani and
R. Thomas read parts of the latest manuscript and provided feedback.
My former PhD students T. Peery, O. Toker, and M. Zeren helped my
research; without them I would not have been able to allocate extra
time to prepare the supplementary class notes that eventually formed
the basis of this book. I would also like to acknowledge National Sci-
ence Foundation’s support of my current research. The most significant
direct contribution to this book came from my wife Ozlem, who was
always right next to me while I was writing. She read and criticized the
preliminary versions of the book. She also helped me with the MATLAB
plots. Without her support, I could not have found the motivation to
complete this project.

Hitay Ozbay
Columbus, May 1999
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To my wife, Ozlem
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Chapter 1

Introduction

1.1 Feedback Control Systems

Examples of feedback are found in many disciplines such as engineering,
biological sciences, business, and economy. In a feedback system there
is a process (a cause-effect relation) whose operation depends on one or
more variables (inputs) that cause changes in some other variables. If
an input variable can be manipulated, it is said to be a control input,
otherwise it is considered a disturbance (or noise) input. Some of the
process variables are monitored; these are the outputs. The feedback
controller gathers information about the process behavior by observing
the outputs, and then it generates the new control inputs in trying to
make the system behave as desired. Decisions taken by the controller
are crucial; in some situations they may lead to a catastrophe instead
of an improvement in the system behavior. This is the main reason
that feedback controller design (i.e., determining the rules for automatic

decisions taken by the feedback controller) is an important topic.

A typical feedback control system consists of four subsystems: a

process to be controlled, sets of sensors and actuators, and a controller,

1
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Figure 1.1: Feedback control system.

as shown in Figure 1.1. The process is the actual physical system that
cannot be modified. Actuators and sensors are selected by process
engineers based on physical and economical constraints (i.e., the range
of signals to be measured and/or generated and accuracy versus cost of
these devices). The controller is to be designed for a given plant (the

overall system, which includes the process, sensors, and actuators).

In engineering applications the controller is usually a computer, or
a human operator interfacing with a computer. Biological systems can
be more complex; for example, the central nervous system is a very
complicated controller for the human body. Feedback control systems
encountered in business and economy may involve teams of humans as

main decision makers, e.g., managers, bureaucrats, and/or politicians.

A good understanding of the process behavior (i.e., the cause-effect
relationship between input and output variables) is extremely helpful
in designing the rules for control actions to be taken. Many engineer-
ing systems are described accurately by the physical laws of nature.
So, mathematical models used in engineering applications contain re-
latively low levels of uncertainty, compared with mathematical mod-

els that appear in other disciplines, where input-output relationships
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can be much more complicated.

In this book, certain fundamental problems of feedback control the-
ory are studied. Typical application areas in mind are in engineering.
It is assumed that there is a mathematical model describing the dynam-
ical behavior of the underlying process (modeling uncertainties will also
be taken into account). Most of the discussion is restricted to single
input-single output (SISO) processes. An important point to keep in
mind is that success of the feedback control depends heavily on the ac-
curacy of the process/uncertainty model, whether this model captures
the reality or not. Therefore, the first step in control is to derive a
simple and relatively accurate mathematical model of the underlying
process. For this purpose, control engineers must communicate with
process engineers who know the physics of the system to be controlled.
Once a mathematical model is obtained and performance objectives are
specified, control engineers use certain design techniques to synthesize
a feedback controller. Of course, this controller must be tested by sim-
ulations and experiments to verify that performance objectives are met.
If the achieved performance is not satisfactory, then the process model
and the design goals must be reevaluated and a new controller should
be designed from the new model and the new performance objectives.
This iteration should continue until satisfactory results are obtained,

see Figure 1.2.

Modeling is a crucial step in the controller design iterations.
The result of this step is a nominal process model and an uncertainty
description that represents our confidence level for the nominal model.
Usually, the uncertainty magnitude can be decreased, i.e., the confi-
dence level can be increased only by making the nominal plant model
description more complicated (e.g., increasing the number of variables
and equations). On the other hand, controller design and analysis for
very complicated process models are very difficult. This is the basic

trade-off in system modeling. A useful nominal process model should
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be simple enough so that the controller design is feasible. At the same
time the associated uncertainty level should be low enough to allow the
performance analysis (simulations and experiments) to yield acceptable

results.

The purpose of this book is to present basic feedback controller
design and analysis (performance evaluation) techniques for simple SISO
process models and associated uncertainty descriptions. Examples from
certain specific engineering applications will be given whenever it is ne-
cessary. Otherwise, we will just consider generic mathematical models

that appear in many different application areas.

1.2 Mathematical Models

A multi-input-multi-output (MIMO) system can be represented as shown
in Figure 1.3, where uy, ..., u, are the inputs and y1, .. .,y, are the out-
puts (for SISO systems we have p = ¢ = 1). In this figure, the direction
of the arrows indicates that the inputs are processed by the system to

generate the outputs.

In general, feedback control theory deals with dynamical systems,
L.e., systems with internal memory (in the sense that the output at time
¢t = to depends on the inputs applied at time instants ¢ < t5). So, the
plant models are usually in the form of a set of differential equations
obtained from physical laws of nature. Depending on the operating

conditions, input/output relation can be best described by linear or
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Figure 1.4: Rigid and flexible robots.

nonlinear, partial or ordinary differential equations.

For example, consider a three-link robot as shown in Figure 1.4.
This system can also be seen as a simple model of the human body.
Three motors located at the joints generate torques that move the three
links. Position, and/or velocity, and/or acceleration of each link can be
measured by sensors (e.g., optical light with a camera, or gyroscope).
Then, this information can be processed by a feedback controller to pro-
duce the rotor currents that generate the torques. The feedback loop is
hence closed. For a successful controller design, we need to understand
(i-e., derive mathematical equations of) how torques affect position and
velocity of each link, and how current inputs to motors generate torque,
as well as the sensor behavior. The relationship between torque and po-
sition/velocity can be determined by laws of physics (Newton’s law).
If the links are rigid, then a set of nonlinear ordinary differential equa-
tions is obtained, see [26] for a mathematical model. If the analysis and
design are restricted to small displacements around the upright equi-
librium, then equations can be linearized without introducing too much

error [29]. If the links are made of a flexible material (for example,



