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Prologue

The role of astrometry is to set up a system of space-time coordinates for
describing events such as the emission of a light signal from a distant object
and its reception by an observer. Within this definition can be included
not only observations of direction and the derivation of linear coordinates
by trigonometric methods but also the measurement of travel times of
signals between observer and object.

Until the space age, astrometry was concerned only with measurement
of directions and, since directions can be represented by points on the
celestial sphere, the word astrometry has become virtually synonymous
with spherical astronomy. All the texts on the subject which are currently
available, such as for example Chauvenet (1891), Newcomb (1906), Smart
(1931), Woolard and Clemence (1966), van de Kamp (1967) and McNally
(1974), use spherical trigonometry as the main mathematical tool. In the -
past, this dependence on spherical trigonometry has led to the use, for
computational convenience, of approximations which are no longer
adequate.

It has been recognised since the advent of modern digital computers that
many astrometric calculations, such as coordinate transformations, are
more efficiently carried out using the methods of vector and matrix algebra,
without the necessity for approximations; such methods were -of course
quite impracticable for routine use in the days of hand computation. In
forming my own view that vector methods provide not only a convenient
tool for computation but also give a clear physical insight in theoretical
developments, I have been strongly influenced by the late Professor E A
Milne’s Vectorial Mechanics. ‘

My original intention was to develop traditional astrometry by vector
methods, but it soon became clear that, with the increased accuracy of
measurements to be expected from space-borne telescopes, and the
development of radar and laser ranging to the Moon and planets, a purely
traditional approach based on Newtonian mechanics was no longer
appropriate.

The first observational success of general relativity was the measurement
of light deflection by the Greenwich and Cambridge expeditions to the
eclipse of 1919; this was a purely astrometric observation, yet relativity
has been generally ignored in subsequent books on astrometry. I have
therefore attempted to construct a theory of astrometric observations based
on general relativity. For the present purpose I have accepted Einstein’s



2 Prologue

theory as it stands, and have not thought it worth while to introduce the
further complication of parametrised post-Newtonian (PPN) formalism to
allow for possible modifications to the theory. As an optical astrometrist
it would be highly presumptuous of me to write a text on relativity per se,
and this book is certainly not to be regarded as one: yet I believe that
relativity can no longer be ignored in modern astrometric theory or practice.

In the first two chapters we develop from a relativistic standpoint the
basic theory of orbital motion of a particle, and in particular that of a
photon, in the Schwarzschild metric. These two chapters together provide
~ the framework for the interpretation of the astrometric observable quan-
tities, directions and clock times. The coordinate frames used in astrometry
are closely related to the gravity field of the Earth and its orbital and
rotational motion, which are discussed in Chapters 3, 4 and ‘5. The treat-
ments of Keplerian motion in Chapter 1 and of the rotation of a rigid body
in Chapter 3 follow closely those by Milne.

Although the rotational orientation of the Earth, as measured ebymmw NP

versal time and polar motion, is of fundamental importance for astrometric
observations, the general availability of an atomic time-scale now enables
the problems arising from variability of the Earth’s rotation to be separated
from those of timekeeping. In Chapter 6 we discuss various time-scales
and derive the relationship between the coordinate time of relativity theory
and the ideal ‘terrestrial time’ which we identify with the IAU (1976) scale
based on caesium atomic standards.

In Chapter 7 we consider the systematic effects of the atmosphere on
the direction and speed of transmission of light. We make the customary
approximation of spherical symmetry but an attempt has been made to
correct for water vapour in a rather more rigorous way than has been usual,
by allowing the scale height to be independent of that of the dry component.
Order-of-magnitude estimates of the effects of ionospheric refraction are
also given.

Much ground-based optical astrometry, particularly of faint objects, is
carried out by photographic techniques in which relative measurements
are made within a small area of sky, frequently using large telescopes; this
includes not only the derivation of positions by interpolation between
standard stars but also the determination of relative parallaxes and proper
motions; we discuss these topics in Chapter 8. Considerable advances in
this branch of astrometry have been made in recent years, with the advent
of large automatic plate-measuring machines and the development of
computational techniques such as the plate-overlap method.

A major problem in astrometry, which we discuss in Chaptér 9, is the

- measurement of directions on a global scale with the ultimate aim of setting
up an inertial reference frame. The traditional technique in optical
astrometry is by meridian observations of bright objects, stars and the

- major bodies in the Solar System, which demand extreme care in calibration




Prologue 3

of the instruments and interpretation of the measurements. Observations
of the motion of the local vertical are also required and we shall therefore
describe the astronomical techniques now used for measuring time and the
variation of latitude. In this field, astrometry is closely allied to geodesy
and geophysics and the modern techniques of Doppler measurements of
artificial satellites and laser ranging to satellites and the Moon now con-
tribute very significantly to studies of the motion of the Earth’s surface;
however, since these measurements do not give direct information on the
direction of the vertical, which is required for astrometry, we shall not
discuss them in any detail.

A global coordinate system can also be constructed by radio inter-
ferometry, but it is still necessary to relate this to the reference frame of
optical astrometry through observations of optical counterparts of compact -
radio sources. :

An observational reference frame can be related to an inertial frame by
comparing with theory observations of any dynamical system made over
a sufficiently extended time interval. This can be done in principle from
observations of Solar System bodies for which the theories have been
developed to a high degree of precision, but in practice, because of limita-
tions to the accuracy of observations of the directions to the Sun, Moon
and major planets, it has been found more satisfactory to use stars. It is
therefore necessary to have a model of stellar kinematics for comparison
with observations. We give in Chapter 10 a description of the main features
of motions in the Galaxy as presently understood, which have formed the
basis for defining an inertial frame, and we conclude with a brief account
of observational programmes for defining an inertial frame from observa-
tions of extragalactic objects.

My aim throughout has been to give a self-consistent mathematical
formulation for the interpretation and analysis of astrometric observations,
rather than to describe particular instrumental or computational techniques.
Numerical values of astronomical constants have been taken from the IAU
(1976) system as adopted at the General Assembly at Grenoble (IAU
1977). A development of the vector and tensor formulae which are used
extensively in this book is given in Appendix A. In particular it should be
noted that the prime (') symbol is used exclusively to denote matrix transpo-
sition. Since scalar multiplication of two vectors is a special case of transpose
multiplication of matrices, we use the prime, instead of the usual dot, to
denote a scalar product. This and other minor deviations from the generally
accepted notion are described in Appendix A.
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1 Dynamical Foundations of
Astrometry

Since all astrometric observations are made from a platform which is itself
moving relative to the rest frame of the Solar System, it is necessary to
have an accurate numerical description of this motion, and to model its
consequences on the interpretation of observations,

A logical starting point for our discussion is therefore the theory of
orbital motion. The complete determination of the motions of bodies in
the Solar System belongs to the field of celestial mechanics and is beyond
the scope of this book; for our purpose a study of elementary theory will
be sufficient.

Classical astrometric techniques have been developed from the stand-
point of Newtonian mechanics and the inverse square law of gravitation,
and have led to a very satisfactory accordance between theory and observa-
tion. But there are small, though well determined, deviations from the
predictions of Newtonian theory, two of which, the deflection of light in
the gravitational field of the Sun and the excess secular motion of the
planetary perihelia, notably that of Mercury, have been detected and
measured by means of classical techniques. These effects now appear to
be adequately accounted for by general relativity.

The very high precision which is now attainable in timekeeping has
also made essential a proper relativistic treatment of timing measure-
ments in, for example, radio interferometry and ranging by radar and
laser beams.

It is now necessary therefore to re-examine from a relativistic viewpoint
the assumptions upon which the whole edifice of classical astrometry has
been built. In this chapter we shall develop the theory of orbital motion
and discuss the definitions, physical units and basi¢ constants which are
used in astrometry and celestial mechanics. In the following chapter we
shall examine the propagation of light signals in the gravitational field of
the Sun, and their interpretation by an observer. These two chapters are
not intended to give a complete exposition of general relativity, but merely
to introduce in an elementary fashion those aspects of it which have practical
consequences for high-precision astrometric measurements. Our treatment
will be within a Euclidean framework, without any appeal to the elegant
mathematical formalism which is usually associated with relativity.



6 Dynamical foundations of astrometry
1.1 Space-time metrics

In four-dimensional Riemannian space, the general expression for the
interval dr between two adjacent events, in terms of coordinate differentials
dx” (¢v=0,...,3), can be written

drdr=g,, dx* dx" (1.1.1)

where u, v are dummy symbols (not exponents), and we adopt the summa-
tion convention that a repeated dummy implies summation over all values
0,...,3: Thus (1.1.1) represents a sum of 16 terms. The numbers i
Wthh are, in general, functions of the coordmates are said to define the
metric of the space.

According to the general relativity theory, the metric depends on the
distribution of matter; the g,, satisfy certain partial differential equations
known as Einstein's equations. Such a metric is known as a ‘space-time’
metric.

The sequence of coordinates of a moving particle describes its ‘world
line’ and, in particular, the world line of a particle which moves freely in
the gravitational field is known as a geodesic.

It will be sufficient for our present purpose to confine attention to a
static sphencally symmetncal field arising from a single isolated mass. We
will identify (x', x , x°) with spatial coordinates relative to the centre of
symmetry, and x wxll be taken as ‘coordinate time’ and denoted by t. The -
assumption that the field is static implies that the g, are not functions of
t. Even with spherical symmetry, the radial scale can be defined to vary
quite arbitrarily as a function of radius; but once this radial scale has been
chosen, the differential equations describing a geodesic are completely
determined.

However, we are stxll at liberty to choose the space upon which to map
the coordinates (x x2 ;X ) This is exactly analogous to the choice of a
geometrical projection in constructing a two-dimensional map. It has been
shown by Atkinson (1963) that the relativistic properties of a spherically
symmetrical field can be described quite rigorously within the framework
of a three-dimensional Euclidean space; this is perhaps not so surprising
since the assumption of spherical symmetry implies that the form of
the metric is unchanged by a Euclidean transformation of the spatial
coordinates.

We shall adopt this point of view, and postulate a Euclidean space defined
by.three mutually orthogonal Cartesian axes with origin at the centre of
symmetry, which represent the rest frame of the field. We define the
‘coordinate vector’ x and ‘coordinate velocity' dx/dr to be the three-
dlmenswnal Fuclldean vectors whose components are (¢, x?, v*) and
(dx'/dr, dx’/dr, dx>/dt) respectively.



