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PREFACE

These notes had their genesis in a widely distributed but unpublished set of
notes Differentiability of convex functions on Banach spaces which I wrote in
1977-78 for a graduate course at University College London (UCL). Those
notes were largely incorporated into J. Giles' 1982 Pitman Lecture Notes
Convex analysis with application to differentiation of convex functions. In the
course of doing so, he reorganized the material somewhat and took advantage
of any simpler proofs available at that time. I have not hesitated to return
the compliment by using a few of those improvements. At my invitation, R.
Bourgin has also incorporated material from the UCL notes in his extremely
comprehensive 1983 Springer Lecture Notes Geometric aspects of convex sets
with the Radon-Nikodym property. The present notes do not overlap too
greatly with theirs, partly because of a substantially changed emphasis and
partly because I am able to use results or proofs that have come to light since
1983.

Except for some subsequent revisions and modest additions, this material was
covered in a graduate course at the University of Washington in Winter
Quarter of 1988. The students in my class all had a good background in
functional analysis, but there is not a great deal needed to read these notes,
since they are largely self-contained; in particular, no background in convex
functions is required. The main tool is the separation theorem (a.k.a. the
Hahn-Banach theorem); like the standard advice given in mountaineering
classes (concerning the all-important bowline for tying oneself into the end of
the climbing rope), you should be able to employ it using only one hand while
standing blindfolded in a cold shower.

These notes have been influenced very considerably by frequent
conversations with Isaac Namioka (who has an almost notorious instinct for
simplifying proofs) as well as occasional conversations with Terry Rockafellar;
I am grateful to them both. I am also grateful to Jon Borwein, Marian Fabian
and Simon Fitzpatrick, each of whom sent me useful suggestions based on a
preliminary version.

Robert R. Phelps
October 5, 1988
Seattle, Washington

Production note: I typed these notes on a Macintosh using MacWrite 4.5 (with the
Princeton Font 2.0) for the text and MacPaint for the drawings. The non-mathematical
portions (such as the present page) were done in the New York font and all of it was
printed on an Apple LaserWriter II.



INTRODUCTION

The study of the differentiability properties of convex functions on infinite
dimensional spaces has continued on and off for over fifty years. There are a
couple of obvious reaons for this. Aside from the intrinsic interest of
investigating the many consequences implicit in something as simple as
convexity, there is the satisfaction (for this author, at least) in discovering
that a number of apparently disparate mathematical topics (extreme points -
rather, strongly exposed points - of noncompact convex sets, monotone
operators, perturbed optimization of real-valued functions, differentiability
of vector-valued measures) are in fact closely intertwined, with
differentiability of convex functions forming a common thread.

Starting in Section 1 with the definition of convex functions and a
fundamental differentiability property in the one-dimensional case
[right-hand and left-hand derivatives always exist], we get quickly to the first
infinite dimensional result, Mazur's intriguing 1933 theorem: A continuous
convex function on a separable Banach space has a dense Gz set of points

where it is (Gateaux) differentiable. In order to go beyond Mazur's theorem,
some time is spent in studying the subdifferential of a convex function f; this
is a set-valued map from the space to its dual whose image at each point x
consists of all plausible candidates for the derivative of f at x. [The function
f is Gateaux differentiable precisely when the subdifferential is single-valued,
and it is Fréchet differentiable precisely when its subdifferential is
single-valued and norm-to-norm continuous.]

Since a subdifferential is a special case of a monotone operator, Section 2
starts with a detailed look at monotone operators. These objects are of
independent origin, having been extensively studied in the sixties and early
seventies by numerous mathematicians (with major contributions from H.
Brezis, F. Browder and G. J. Minty) in connection with nonlinear partial
differential equations and other aspects of nonlinear analysis. (See, for
instance, [Bre] or [Pa-Sb]). Also in the sixties, an in-depth study of monotone
operators in fairly general spaces was carried out by R. T. Rockafellar, who
established a number of fundamental properties, such as their local
boundedness. He also gave an elegant characterization of those monotone
operators which are the subdifferentials of convex functions, a theorem which
is much easier to state than to prove (and which is not proved in full
generality until Section 3). [The connection between monotone operators and
derivatives of convex functions is readily apparent on the real line, since
menotone operators coincide in that case with monotone nondecreasing
functions, as do the right-hand derivatives of convex functions of one
variable.]
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In 1968, E. Asplund extended Mazur's theorem in two ways: He found more
general spaces in which the same conclusion holds, and he studied a less
general class of Banach spaces (now called Asplund spaces) in which a
stronger conclusion holds. (Namely, he replaced the Gateaux derivative by the
stronger Fréchet derivative.)  Asplund used an ingenious combination of
analytic and geometric techniques to prove some of the basic theorems in the
subject. Roughly ten years later, P. Kenderov (as well as R. Robert and S.
Fitzpatrick) proved some general continuity theorems for monotone operators
which, when applied to subdifferentials, yield Asplund's results as special
cases. In Section 2 we follow this approach, incorporating recent work by D.
Preiss and L. Zajicek to obtain the major differentiability theorems.

The results of Section 2 all involve continuous convex functions defined on
open convex sets. For many applications, it is more suitable to consider lower
semicontinuous convex functions, even those which are extended real valued
(possibly equal to +e). (For instance, in many optimization problems one finds
just such a function in the form of the supremum of an infinite family of
affine continuous functions.) Lower semicontinuous convex functions also
yield a natural way to translate results about closed convex sets into results
about convex functions and vice versa. (For instance, the set of points on or
above the graph of such a convex function - its epigraph - forms a closed
convex set). In Section 3 one will find some classical results (various versions
and extensions of the Bishop-Phelps theorems) which, among other things,
guarantee that subdifferentials still exist for lower semicontinuous convex
functions. A nonconvex version of this type of theorem is I. Ekeland's
variational principle, which asserts that a lower semicontinuous function
which nearly attains its minimum at a point x admits arbitrarily small
perturbations (by translates of the norm) which do attain a minimum, at
points near x. This result, while simple to state and prove, has been shown
by Ekeland [Ek] to have an extraordinarily wide variety of applications, in
areas such as optimization, mathematical programming, control theory,
nonlinear semigroups and global analysis.

In Section 4, a variational principle is established which uses differentiable
perturbations; this recent result is due to J. Borwein and D. Preiss. Some deep
theorems about differentiability of convex functions fall out as fairly easy
corollaries, and it is reasonable toc expect future useful applications.

Section 5 describes the duality between Asplund spaces and spaces with the
Radon-Nikodym property (RNP). These are Banach spaces for which a
Radon-Nikodym-type differentiation theorem is valid for vector measures
with values in the space. Spaces with the RNP have an interesting history,
starting in the late sixties with the introduction by M. Rieffel of a geometric
property (dentability) which turned out to characterize the RNP and which
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has led to a number of other characterizations in terms of the extreme points
(or strongly exposed peoints) of bounded closed, convex subsets of the space. A
truly beautiful result in this area is the fact that a Banach space is an Asplund
space if and only if its dual has the RNP. (Superb expositions of the RNP may
be found in the books by J. Diestel and J. J. Uhl [Di-U] and R. Bourgin [Bou].) In
Section 5, the RNP is defined in terms of dentability, and a number of basic
results are obtained using more recent (and simpler) proofs than are used in
the above monographs. One will also find there J. Bourgain's proof of C.
Stegall's perturbed optimization theorem for semicontinuous functions on
spaces with the RNP; this yields as a corollary the theorem that in such spaces
every bounded closed convex set is the closed convex hull of its strongly
exposed points.

The notion of perturbed optimization has been moving closer to center stage,
since it not only provides a more general format for stating previously known
theorems, but also permits the formulation of more general results. The idea
is simple: One starts with a real-valued function f which is, say, lower
semicontinuous and bounded below on a nice set, and shows that there exist
arbitrarily small perturbations g such that f + g attains a minimum on the
set. The perturbations g might be restrictions of continuous linear
functionals of small norm, or perhaps Lipschitz functions of small Lipschitz
norm. Moreover, for really nice sets, the perturbed function attains a strong
minimum: Every mimimizing sequence converges.

The brief Section 6 is devoted to the class of Banach spaces in which every
continuous convex function is Gateaux differentiable in a dense set of points
(dropping the previous condition that the set need be a Gg). Some evidence

is presented that this is perhaps the "right" class to study.

Even more general than monotone operators is a class of set valued maps
(from a metric space, say, to a dual Banach space) which are upper
semicontinuous and take on weak* compact convex values, the so-called usco
maps. In Section 7, some interesting connections between monotone
operators and usco maps are described, culminating in a topological proof of
one of P. Kenderov's continuity theorems.
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1. Convex functions on real Banach spaces.

The letter E will always denote a real Banach space, D will be a nonempty
open convex subset of E and f will be a convex function on D. That is,
:D > R satisfies

fltx + (1 - )yl < tr(x) + (1 - )f(y)

whenever x,y €D and 0 <t < 1. If equality always holds, f is said to be
affine. A function f:D » R is said to be concave if - is convex. We will
be studying the differentiability properties of such functions, assuming, in
the beginning, that they are continuous.

1.1 Examples.

(a) The norm function f(x) = uxIl is an obvious example. More generally, if
C is a nonempty convex subset of E, then the distance function

de(x) = inf{ix = yn: y € CJ, X € E,
is continuous and convex on D = E. (Note that d.(x) = uxin if C={0}.)

(b) The supremum of any family of convex functions is convex on the set
where it is finite. In particular, if A is a nonempty bounded subset of E,
then the farthest distance function x - sup{iix - yn: y € A} is continuous
and convex on D = E.

(c) The norm function is also generalized by sublinear functionals, that is,
functions p:E 2+ R which satisfy

p(x + y) < p(x) + p(y) and p(tx) = tp(x) whenever t > 0.
Obviously, the supremum of a finite family of linear functionals is sublinear.
A sublinear functional p is continuous if and only if there exists M > 0
such that p(x) < Muxn for all x.

(d) The Minkowski functional is another generalization of the norm
function: Suppose that C is a convex subset of E, with 0 ¢ int C. Define
pe(x) = inf{ A > 0:x e AC}, x¢cE.

The functional p. is sublinear and nonnegative. Moreover, p-(x) =0 if and
only if R*x € C, and bdry C = {x: pc(x) = 1}; in fact

int C = {x: pe(x) < 1) € C C {x: pe(x) < 1} = C.
There exists M > 0 such that pc(x) < Muxl for all x (take M = 1/r, where
the ball of radius r centered at 0 is contained in C), hence pc is
necessarily continuous. Conversely, any positive-homogeneous, subadditive,
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nonnegative and continuous functional p on E is of the form pc, simply
take C = {x: p(x) < 1}. These functionals fail to be seminorms if and only if
C is not symmetric with respect to O, that is, if and only if there exists x
with pc(x) = pe(=x).

1.2 Lemma. If xp € D, then for each x ¢ E the "right hand” directional
derivative

() d* f(xg)(x) = lim (o * tx) - T(xg)
>0+ t

exists and defines a sublinear functional on E.

Proof. Note that since D is open, f(xg + tx) is defined for sufficiently
small t > 0. The picture below shows why d*f(xg) exists; the difference
quotient is nonincreasing as t - 07, and bounded below, by the corresponding
difference quotient from the left.

%o Yo +x
To prove this, we can assume that xg =0 and f(xg) = 0. If 0 <t <s, then

by convexity

- Y 400y = Ligsx),
S S

f(tx) € —f(sx) +

o |~

which proves monotonicity. Applying this to -x in place of x, we see that
‘[f(XO - tX) - f(Xo)]/t.
is nondecreasing as t - 0°. Moreover, by convexity again, for t >0

2f(><0) =< r(XO - 21>(> + f(XO + 2tx), so that

S[f(xg = 2tx) = T(x)] < [flxg + 2t%) = f(x)]
2t 2t

which shows that the right side is bounded below and the left is bounded
above. Thus, both limits exist; the left one is -d*f(xg)(-x) and we



obviously have
—d*f(xg)(-x) < d*f(xg)(x).

It is also obvious that d*f(x) is positively homogeneous. To see that it is
subadditive, use convexity again to show that for t > 0,

2f(x + t(y + V) - f(x)]i f(x + 2ty) - f(x) , flx + 2tv) - f(x)
2t 2t 2t

and take limits as t - 0.

1.3 Definition. The convex function f is said to be Gateaux
differentiable at Xg € D provided the limit
df(xg)(x) = lim  f(xg + tx) = f(xg)
t-0 t
exists for each x € E. The function df(xg) is called the Gateaux derivative
(or Gateaux differential) of f at xg.

It is immediate from this definition that f is Gateaux differentiable at
Xg if and only if -d"f(xg)(-x) = d*f(xg)(x) for each x € E. Since a sublinear
functional p is linear if and only if p(-x) = -p(x) for all x, this shows
that f is Gateaux differentiable at xgy if and only if
X = d T(Xg)(x)
is linear in x:; in particular, if this is true, then df(xy) is a linear
functional on E.

1.4 Examples.

(@) If f is a linear functional on E (not necessarily continuous), then
df(xg)(x) = f(x) for all xo and x. For an example of a discontinuous linear
functional on a normed linear space, let f(x) = x'(0), for x in the space of
all polynomials on [-1, 1] with supremum norm. (It is easy to construct a
sequence of polynomials x, converging uniformly to O such that x.(0) = I

for all n.) Thus, x - df(xg)(x) need not be continuous.

(b) The norm uxiy =2 |x,| in &' is Gateaux differentiable precisely at
those points x = (x,) for which x,=0 for all n. Inthis case, the Gateaux
differential is the bounded sequence (sgn x,) € 2*. The norm in 2(I') (T
uncountable) is not Gateaux differentiable at any point.

Proof. If x€ &' and x,=0 for some n, let §,=(0,0,..,0,1,0,..) be
the sequence whose only nonzero term is a | in the n-th place. It follows
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that lix + t8,I1y = Ixl; = |t|, so dividing both sides by t shows that the
(two-sided) limit as t - 0 does not exist. [This observation shows how to
prove the second assertion, since any element of 2(I") vanishes at all but a
countable number of members of T.] Suppose, on the other hand, that for
every n, X, =0, that € >0 and that y e &'. We can choose N > 0 such
that X, -n|Un| < €/2. For sufficiently small 8§ > 0 we have
sgn(x, * ty,) =sgnx, if 1 <n<N, |t] <s.
Consequently,
|t + tyny = nxiy) = 2y, sgn X, | <

IznﬂNt_]{'xn +tUn|_ |xnl - Wy Sgnxn” * 22n>N|Un| <€

provided |t| <&.

If f is acontinuous convex function which is Gateaux differentiable at a
point, then its differential is a continuous linear functional. This is a
consequence of the following basic result.

1.5 Notation. If xe€E and r > 0, the closed ball centered at X s
denoted by B(x:r) ={y € E: Ix -yl <r).

1.6 Proposition. If the convex function f is continuous at xg € D, then
it is locally Lipschitzian at xg, that is, there exist M >0 and § > 0
such that B(xg: §) € D and

| 1(x) = 1(y)| < Mux - yu
whenever x, y € B(xq;: 8).

Proof. Since f is continuous at xg, it is locally bounded there; that is,
there exist M; >0 and & >0 such that |f| <M; on B(xq: 28) CD. If x,
y are distinct points of B(xg: §), let o = IIx -yl and let

z=y+ (8/c)(y - x):
see the sketch below.

/.//

/

\
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Note that 2z € B(xg: 268). Since y = [x/(x*8)]1z + [6/(x*+8)]x is a convex
combination (lying in B(xg: 28)), we have

1(y) < o/ (oc+8)1(2) + [8/(x+8)IF(x)  s0
f(y) - (%) <[x/(x*+8)T(2) - F(x)} < (/8)-2M; = (2M4/8)UX ~ yll.
Interchanging x and y gives the desired result, with ™M = 2M,/§.

Note that we only used local boundedness of f; hence the latter property is
equivalent to continuity for convex functions.

1.7 Corollary. If the convex function f is continuous at Xy € D, then
d*f(xg) is a continuous sublinear functional on E, and hence df(xg) (when
it exists) is a continuous linear functional.

Proof. Given xg € D there exists a neighborhood B of Xy and M >0
such that, if x € E, then
f(xg *+ tx) - f(Xg) < Mtuxl

provided t > 0 is sufficiently small that xg + tx € B. Thus, for all points
X € E, we have d'f(xg)(x) < Muxn, which implies that d"f(xg) is
continuous.

1.8 Proposition. The continuous convex function f is Gateaux
differentiable at xg € D if and only if there exists a unique functional x*
in E* satisfying

) <x*, % = Xg> < (%) = (X)), x €D,
or equivalently

(**) <x*, y> < d(xg)(w), y e E.

Proof. We first show that (*) and (**) are equivalent. If x* satisfies (*),
then for any y € E we have xg + ty € D for sufficiently small t >0 hence
tdx*, y> = <x*, (Xg + ty) -xg> < f(xg *+ ty) - f(xg) which implies that x*
satisfies (**). Conversely, if x* satisfies (**)and x € D, let y = x - Xg:
then xg + t(x - %) eD ifO<t<1 so

<X*, X - X0> =< d*f(XO)(X - Xo) =< t-][f(XO + t(x - Xo)) - f(XO)]

Setting t = 1 yields (**).



6

If df(xg) exists, then df(xg)(x - xg) < f(x) - f(xg) as above, so df(xg)
satisfies (*). Moreover, if x* satisfies (*), then it satisfies (**);
linearity of d"f(xg) = df(xg) implies that x* = df(xg).

Conversely, suppose that x* s the unique element of E* satisfying (*),
hence the unique element satisfying (**). We now apply the general fact
that if a continuous sublinear functional p majorizes exactly one linear
functional, then p is itself linear. Indeed, if p is not linear, then it
dominates many linear functionals (see the sketch below); the proof is an
easy consequence of the Hahn-Banach theorem: If -p(-x) < p(x), find
p-dominated extensions of the linear functionals

f,(rx) = rp{x) and fo(rx) = -rp(-x).

dominated linear

,,,,,,,,,,, functionals
,,,,, N \

The functionals x* which satisfy (*) play an important role in the study of
convex functions, so they are singled out for special attention.

1.9 Definition. If f s a convex function defined on the convex set C
and x € C, we define the subdifferential of f at x to be the set 9f(x) of
all x* ¢ B* satisfying

{x*,y - %> < f(y) - f(x) for all yeC.

Note that this is the same as saying that the affine function x* + «, where
o« = f(x) - <x*, x>, is dominated by f and is equal to it at y = X, as
indicated in the sketch.

///////// 7

Graph of f

Graph of x* + f(x)- {x*, x>

X
The Hahn-Banach argument we used above shows quickly that if f s
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continuous at xg, then 9f(xg) is nonempty: d*f(xy) is continuous and
sublinear, so (as above) there exists x* such that <x*, y> < d"f(xg)(y) for
all y € E. Using the fact that the right-hand difference quotients for
d*f(xg) are decreasing, replacing y by y - xg and letting t =1, we get

Cx*, Y = Xg> < d'f(x)(y = %g) < T((y - %) + Xg) - f(xg) for all y e C.

As we will see later, it is still possible to have 3f(xy) nonempty for
certain convex f which are not continuous at xg.

1.10 Exercise. Prove that for any convex function f the set 3f(xg)
(possibly empty!) is convex and weak* closed. (Note that a continuous
convex f is Gateaux differentiable at xy if and only if 3f(xy) is a
singleton.)

1.11 Proposition. If the convex function f is continuous at X € D,
then  3f(xg) is a nonempty, convex and weak* compact subset of EX.
Moreover, the map x = 9f(x) is locally bounded at xg, that is, there exist
M >0 and and neighborhood U of xg in D such that 1x*I <M whenever
x € U and x* g of(x).

Proof. The fact that 9f(xg) is nonempty, weak* closed and convex follows
from the preceding remarks and Exercise 1.10. The fact that it is weak*
compact will follow from Alaoglu’s theorem, once we have shown the local
boundedness property. Since, by Proposition 1.6, f is locally Lipschitzian
at xg, there exist M >0 and a neighborhood U of x5 such that

| 1(y) - f(x)| =My - x1 whenever x,y e U.
If x € Uand x* ¢ 3f(x), then for all y € U we have
x>,y = x> < f(y) - f(x) <My - xu,
which implies that x> <M.
1.12 Definitions. Supposed that E and F are normed linear spaces,
that U is a nonempty open subset of E and that ¢:U- F is a continuous

function. We can extend the definition of Gateaux differentiability as

follows: Say that ¢ is Gateaux differentiable at the point xg € U provided
there exists a continuous linear map from E to F (denoted by d¢¥(xg))
such that

(=} dP(xg)(x) = lim g, tH{P(xg *+ tx) - P(xg)} for each x € E.
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Another way of stating this is to say that ¢ has directional derivatives at
Xg in every direction x and the resulting function of x is continuous and
linear.

We say that ¢ is Erechet differentiable at Xy € U provided there exists a
continuous linear map from E to F (denoted by ¢'(xg)) such that for all
€ > 0, there exists & > 0 such that

(%) NP(xg + X) = P(xg) = P (Xg)(X) < €lxll  whenever lxil < §.

we call ¢'(xg) (which is easily seen below to be unique) the Erechet
differential (or Erechet derivative) of ¢.

For the moment, we will be dealing with real-valued continuous functions,
so Gateaux and Frechet derivatives will be continuous linear maps from E
into R, that is, elements of E*.

1.13 Facts.

(@) If f is a continuous function which is Frechet differentiable at Xg,
then it is Gateaux differentiable there and ¢'(xg) = dP(xg). To see this,
replace x in (##) by tx, fix x and let t - 0*. Since limits are unique,
the operator d9(xq) is uniquely determined, hence ¢'(xy) is unique.

(b) Note that ¢ is Frechet differentiable at xgy if it is Gateaux
differentiable there and if the limit in (#) exists uniformly for IxlI<! as
t 0",

1.14 Examples.

(@) The norm in 2! is not Frechet differentiable at any point.

Proof. By Example 1.4(b), we need only consider a point x = (x,) for which
Xy Z 0 for all n. Given such an x, for each m > 1 let

y™ = (0, 0, ..., 0, =2Xp, =2%ms1s ~2Xmane o)
Then 1y™i; > 0 as m - c. Of course, the sequence (sgn x,) is our only
candidate for the Frechet differential. But

| x + g™y = iy = 2™, 890 %o | = | Zaem G2 %0 ][] = g™y

(b) The square of the norm in Hilbert space H is everywhere Frechet
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differentiable. By the chain rule, the norm is therefore differentiable at
every point other than the origin.

Proof. If x, y € H, then ix + yli2 - uxn2 - 2(x, y) = 1yn?; it follows
readily that y = 2(x, y) is the Frechet derivative of I--12 at x.

(c) There exists an equivalent norm on &' which is Gateaux differentiable
at every point (except the origin), but is nowhere Frechet differentiable.
This striking example will be easy to prove after we have developed a few
tools in later sections, so it will be postponed until Section S (following
Theorem 5.12).

(d) In Hilbert space H let C be a nonempty closed convex set and denote

by P the Lipschitz continuous nearest point mapping (or metric projection)
of H onto C; that is, for all x € H, P(x) is the unique point satisfying

x = P(x)n = inf{iix = yn:y € C}.
Recall that 1IP(x) - P(y)il < ux -yl for all x,y € H. Define f on H by
f(x) = (1/2)lnxn2 - ux - P(x)n2l; then f is continuous, convex and
everywhere Frechet differentiable, with f'(x) = P(x) for all x.
Proof. Since

21(x) = uxn2 - inf{ix - yn2: y € ¢} = sup{2<x, y»> - nyn2: y ¢ CJ,

f is the supremum of affine functions, hence is convex (and it is clearly
continuous). To see the differentiability property, fix x € H; then for any
y € H we have

Nx +y) = Px+ Yy < u(x +y) - P, so f(x+y) - flx)-<PKx), y> >0.
On the other hand, since IIx = P(x)Il < iix - P(x + y)Il we get

f(x +y) - f(x) - <P(x), y» = <y, P(x + y) - P(x)> =
< yn-nP(x +y) = P <iyn?,

which proves the differentiability assertion.

1.1S Exercises.

(a) Prove that for continuous convex functions in finite dimensional spaces,
Gateaux differentiability implies Frechet differentiability. (Hint: Use the
Fact 1.13 (b), the local Lipschitz property and compactness of the unit ball



